
An Introduction to MMPDElab

Weizhang Huang∗

1 Introduction

MMPDElab is a package written in MATLAB1 for adaptive mesh movement and adaptive moving

mesh P1 finite element solution of second-order partial different equations (PDEs) having continuous

solutions in one, two, and three spatial dimensions. It uses simplicial meshes, i.e., line segments in

one dimension, triangles in two dimensions, and tetrahedra in three dimensions. The adaptive mesh

movement is based on the new implementation [7, 8] of the moving mesh partial differential equation

(MMPDE) method [1, 2, 10, 11, 12, 13, 14]. The mesh equation is integrated using either ode45

(an explicit MATLAB ODE solver) or ode15s (an implicit MATLAB ODE solver) while physical

PDEs are discretized in space using P1 conforming finite elements on moving meshes and integrated

in time with the fifth-order Radau IIA method (an implicit Runge-Kutta method) with a two-step

error estimator [5] for time step selection. More information on the moving mesh P1 finite element

method can be found from recent applications such as those found in [3, 9, 15, 16, 17, 20, 21].

The source code of MMPDElab can be downloaded at

• https://whuang.ku.edu/MMPDElab/mmpdelabv1.html

• https://github.com/weizhanghuang/MMPDElab

The functions in MMPDElab can be grouped into three categories:

• Matrix operations (with names in the form Matrix_xxx)

• Mesh movement (with names in the form MovMesh_xxx)

• Moving mesh P1 finite element solution (with names in the form MovFEM_xxx)

The functions in the first category Matrix_xxx perform vectorized computation of basic matrix

operations such as multiplication, inversion, and finding transposes and determinants for arrays of

matrices of small size (typically 3× 3 or smaller). These operations are used by functions in the other

two categories which will be explained in the subsequent sections.
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We now introduce notation whose understanding is crucial to the use of the package. A simplicial

mesh or a simplicial triangulation, Th, of N elements and Nv vertices in d-dimensions (d = 1, 2, or 3)

is represented in MATLAB by the matrices X and tri, where X is a matrix of size Nv × d containing

the coordinates of the vertices and tri is a matrix of size N × (d + 1) listing the connectivity of the

mesh. More specifically, X(i, :) gives the coordinates of the ith vertex xi while tri(j, :) contains the

global IDs of the vertices of the jth element. In MMPDElab, npde components of the physical

solution at the vertices are given by the matrix u of size Nv × npde, i.e., u(i, :) contains the values of

u at the ith vertex. Its derivatives with respect to the physical coordinate x = (x1, x2, ..., xd)
T are

saved in the form

du =
[
(∇u(1))T , ..., (∇u(npde))T

]
Nv×(d∗npde)

,

where u(k) (k = 1, ..., npde) is the kth component of u and ∇ is the gradient operator. Thus,

du(i, :) =

[
∂u(1)

∂x1
, ...,

∂u(1)

∂xd
, ...,

∂u(npde)

∂x1
, ...,

∂u(npde)

∂xd

]
(xi), i = 1, ..., Nv.

The metric tensor or the monitor function, M, is calculated at the vertices and saved in the form

M(i, :) = [M11, ...,Md1, ...,M1d, ...,Mdd] (xi), i = 1, ..., Nv.

That is, M has the size Nv× (d ∗ d), with each row containing the entries of a matrix of size d× d. M

is a good example of an array of matrices of small size. It is emphasized that when a moving mesh

function is called, the mesh connectivity is kept fixed while the location of the vertices varies. The

user can decide whether or not to change the connectivity in between the calls.

To conclude this section, I am deeply thankful for many colleagues and former graduate students

for their invaluable discussion and comments. I am particularly grateful to Dr. Lennard Kamenski

who was involved in the project at the early stage.

MMPDElab is a package written in MATLAB for adaptive mesh

movement and adaptive moving mesh P1 finite element solution

of partial different equations having continuous solutions.

Copyright (C) 2019 Weizhang Huang (whuang@ku.edu)

MMPDElab is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as

published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

MMPDElab is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU Affero General Public License at

<https://www.gnu.org/licenses/>.
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2 Adaptive mesh movement

The adaptive mesh movement can be carried out by calling MovMesh() (based on the ξ-formulation of

the MMPDE moving mesh method [7, 8]), MovMesh_XM() (based on the x-formulation of the MMPDE

moving mesh method), or MovMesh_X() (based on the x-formulation of the MMPDE moving mesh

method with the metric tensor M = I, i.e., without mesh adaptation). The corresponding MMPDE

is defined as a gradient flow equation of the meshing functional developed in [6] based on mesh

equidistribution and alignment (with its parameters being chosen as p = 1.5 and θ = 1/3). The

headers of these functions read as

[Xnew,Ih,Kmin] = MovMesh(tspan,Xi_ref,X,M,tau,tri,tri_bf,nodes_fixed, ...

mmpde_int_method,dt0,abstol)

[Xnew,Ih,Kmin] = MovMesh_XM(tspan,X,M,tau,tri,tri_bf,nodes_fixed, ...

mmpde_int_method,dt0,abstol,Xi_ref)

[Xnew,Ih,Kmin] = MovMesh_X(tspan,X,tau,tri,tri_bf,nodes_fixed, ...

mmpde_int_method,dt0,abstol,Xi_ref)

These functions integrate the corresponding moving mesh equations over a time period specified

by tspan. All of the meshes, X (the current mesh), Xnew (the new mesh), and Xi ref (the reference

computational mesh), are assumed to have the same number of vertices and elements and the same

connectivity (specified by tri). The input and output variables are explained in the following.

• tspan is a vector specifying the time interval for integration.

• X, of size Nv × d, contains the coordinates of vertices of the current mesh.

• Xi ref, of size Nv × d, contains the coordinates of vertices of the reference computational mesh.

This mesh, typically chosen as the initial physical mesh, is a mandatory input for MovMesh() but

is optional for MovMesh_XM() and MovMesh_X(). In the latter case, when Xi ref is not supplied,

the uniformity of the new physical mesh measured in the metric M is made with reference to an

equilateral simplex.

• M, of size Nv×(d∗d), contains the values of the metric tensor M at the vertices of X. More specifi-

cally, M(i,1:d∗d) gives the metric tensor at the ith vertex, i.e., [M11, ...,Md1, ...,M1d, ...,Mdd](xi).

• tau is the positive parameter used for adjusting the time scale of mesh movement.

• tri, of size N × (d+ 1), lists the connectivity for all meshes.

• tri bf, of size Nbf × d, specifies the boundary facets for all meshes, with each row containing the

IDs of the vertices of a facet on the boundary. A boundary facet consists of a point in 1D, a

line segment (with two vertices) in 2D, or a triangle (with three vertices) in 3D. tri bf can be

computed using the Matlab function freeBoundary in 2D and 3D.
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• nodes fixed is a vector containing the IDs of the vertices, such as corners, which are not allowed

to move during the mesh movement.

• mmpde int method is an optional input variable, specifying that either ode15s (implicit) or

ode45 (explicit) is used to integrate the moving mesh equation. The default is ode15s.

• dt0 is an optional input variable specifying the initial time stepsize that is used in the time

integration of the mesh equation. The default is dt0 = (tspan(end)-tspan(1))/10.

• abstol is an optional input variable specifying the absolute tolerance used for time step selection

in the time integration of the mesh equation. The default is asbstol = 1e-6 for ode15s and 1e-8

for ode45.

• Xnew, of size Nv × d, contains the coordinates of vertices of the new mesh.

• Ih is an optional output variable giving the value of the meshing functional at the new mesh.

• Kmin is an optional output variable giving the minimal element volume.

In addition to MovMesh(), MovMesh_XM(), and MovMesh_X(), the following functions can also be

used by the user.

1. [X,tri] = MovMesh_circle2tri(jmax) This function creates a triangular mesh (X, tri) for

the unit circle.

2. [X,tri] = MovMesh_cube2tet(x,y,z) This function creates a tetrahedral mesh (X, tri) from

the cuboid mesh specified by x, y, and z for a cuboid domain. Each subcuboid is divided into 6

tetrahedra.

3. V = MovMesh_freeBoundary_faceNormal(X,tri,tri_bf) This function computes the unit

outward normals for the boundary facets. V has the size of Nbf × d.

4. V = MovMesh_freeBoundary_vertexNormal(X,tri,tri_bf) This function computes the unit

outward normals for the boundary vertices. V has the size of Nv × d, with the normals for the

interior vertices being set to be [1, ..., 1]T /
√
d.

5. [Grad,Hessian] = MovMesh_GradHessianRecovery(u,X,tri,tri_bf) This function computes

the gradient and Hessian of function u at the vertices using centroid-vortex-centroid-vertex

volume-weighted average.

6. Grad = MovMesh_GradKRecovery(u,X,tri,tri_bf) This function computes the gradient of

function u on the elements.

7. Grad = MovMesh_GradRecovery(u,X,tri,tri_bf) This function computes the gradient of

function u at the vertices using volume averaging.

8. fnew = MovMesh_LinInterp(f,X,QP,tri,tri_bf,useDelaunayTri) This function performs

linear interpolation of f (defined on X) at query points QP using triangulation or Delaunay

triangulation. useDelaunayTri is a logical variable with value true or false.
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9. [X,tri] = MovMesh_MeshMerge(X1,tri1,X2,tri2) This function merges two non-overlapping

meshes (X1,tri1) and (X2,tri2) which may or may not have common boundary segments.

10. [Qgeo,Qeq,Qali] = MovMesh_MeshQualMeasure(X,tri,M,Linf_norm,Xi_ref) This function

computes the geometric, equidistribution, and alignment measures (in maximum norm or L2

norm in ξ) for the mesh (X, tri) according to the metric tensor. Here, both Linf norm and

Xi ref are optional input variables.

11. [Qmax,Ql2] = MovMesh_MeshQualMeasure2(X,tri,M,Xi_ref) This function computes the max-

imum and L2 norm of the mesh quality measure based on a single condition combining both

equidistribution and alignment. Xi ref is an optional input variable.

12. [X,tri] = MovMesh_MeshRemoveNodes(X1,tri1,ID) This function removes the nodes listed

in ID from the existing mesh (X1,tri1).

13. [XF,TriF,TriF_parent] = MovMesh_MeshUniformRefine(X,Tri,Level) This function uni-

formly refines a simplicial mesh (Level) times or levels. On each level, an element is refined into

2d elements.

14. M = MovMesh_metric_arclength(u,X,tri,tri_bf) This function computes the arclength met-

ric tensor.

15. MC = MovMesh_metric_F2C(M,Tri,Tri_parent,TriC) This function computes the metric ten-

sor on a coarse mesh from the metric tensor defined on a fine mesh.

16. M = MovMesh_metric_intersection(M1,M2) This function computes the intersection of two

symmetric and positive definite matrices. When M1 and M2 are diagonal, i.e., M1 = diag(α1, ..., αd)

and M2 = diag(β1, ..., βd), then M = diag(max(α1, β1), ...,max(αd, βd)). The intersection of two

general symmetric and positive definite matrices is defined similarly through simultaneous di-

agonalization.

17. M = MovMesh_metric_iso(u,X,tri,tri_bf,alpha,m) This function computes the isotropic

metric tensor based on the L2 norm or the H1 seminorm of linear interpolation error (m = 0 or

m = 1).

18. MM = MovMesh_metric_smoothing(M,ncycles,X,tri) This function smooths the metric ten-

sor ncycles times by local averaging.

19. M = MovMesh_metric(u,X,tri,tri_bf,alpha,m) This function computes the metric tensor

based on the L2 norm or the H1 seminorm of linear interpolation error (m = 0 or m = 1).

20. [X,tri] = MovMesh_rect2tri(x,y,job) This function creates a triangular mesh (X, tri) from

the rectangular mesh specified by x and y for a rectangular domain. Each rectangle is divided

into 2 (for job = 2 or 3) or 4 (for job = 1) triangles.

21. M1 = Matrix_ceil(M,beta) This function puts a ceiling on the eigenvalues of symmetric and

positive definite matrix M such that λmax(M1) ≤ β.
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Examples using these functions include ex1d_1.m, ex2d_1.m, ex2d_2_Lshape.m, ex2d_3_hole.m,

ex2d_4_horseshoe.m, and ex3d_1.m in the subdirectory ./examples.

Troubleshooting. Occasionally one may see an error message like

Error using triangulation

The coordinates of the input points must be finite values; Inf and NaN are not permitted.

Error in MovMesh>MovMesh_rhs (line 296)

TR = triangulation(tri2,XI2);

when calling MovMesh(), MovMesh_XM(), or MovMesh_X(). Typically this is caused by a stability issue

when integrating the MMPDE, and using a smaller initial time step dt0 (e.g., dt0 = 1e-6) may solve

the problem.

The generation of initial meshes. This package includes a few functions for generating initial

meshes for simple domains, such as MovMesh_circle2tri(), MovMesh_cube2tet(), and

MovMesh_rect2tri(). For complex domains, one can use MATLAB function delaunayTriangulation()

or other automatic mesh generators such as DistMesh (in MATLAB) [18] and TetGen (in C++) [19].

3 Adaptive mesh movement P1 finite element solution of PDEs

This package aims to solve the system of PDEs in the weak form: find u = [u(1), ..., u(npde)] ∈
H1(Ω)⊗ · · · ⊗H1(Ω) such that

npde∑
i=1

∫
Ω
Fi(∇u, u, ut,∇v(i), v(i),x, t)dx +

npde∑
i=1

∫
Γ
(i)
N

Gi(∇u, u, v(i),x, t)ds = 0, (1)

∀v(i) ∈ V (i), i = 1, ..., npde, 0 < t ≤ T

subject to the Dirichlet boundary conditions

Ri(u,x, t) = 0, on Γ
(i)
D , i = 1, ..., npde (2)

where for i = 1, ..., npde, Γ
(i)
D and Γ

(i)
N are the boundary segments corresponding to the Dirichlet and

Neumann boundary conditions for u(i), respectively, Γ
(i)
D ∪ Γ

(i)
N = ∂Ω, and V (i) = {w ∈ H1(Ω), w =

0 on Γ
(i)
D }. The headers of MovFEM() (Initial-Boundary-Value-Problem solver) and MovFEM_bvp()

(Boundary-Value-Problem solver) read as

[Unew,dt0,dt1] = MovFEM(t,dt,U,X,Xdot,tri,tri_bf,pdedef, ...

fixed_step,relTol,absTol,direct_ls,ControlWeights)

Unew = MovFEM_bvp(U,X,tri,tri_bf,pdedef,nonlinearsolver,MaxIter,Tol)

MovFEM() integrates the system of PDEs on a moving mesh over a time step. Its input and output

variables are explained in the following.
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• t is the current time.

• dt is the intended time stepsize for integrating the physical PDEs.

• U, of size Nv × npde, is the current solution.

• X, of size Nv × d, contains the coordinates of vertices of the current mesh.

• Xdot, of size Nv × d, is the nodal mesh velocity.

• tri, of size N × (d+ 1), lists the connectivity for all meshes.

• tri bf, of size Nbf × d, specifies the boundary facets for all meshes.

• pdedef is a structure used to define the PDE system in the weak form. It has 5 fields.

(i) pdedef.bfMark, of size Nbf × 1, is used to mark the boundary segments (boundary facets).

This marking is passed to the definitions of boundary integrals and Dirichlet boundary

conditions.

(ii) pdedef.bftype, of size Nbf × npde, specifies the types of boundary condition on bound-

ary facets whose numbering is based on tri bf. pdedef.bftype = 0 for Neumann BCs and

pdedef.bftype = 1 for Dirichlet BCs. For example, pdedef.bftype(3,2) = 1 means that vari-

able u(2) has a Dirichlet BC on the 3rd boundary facet while pdedef.bftype(2,1) = 0 specifies

that variable u(1) has a Neumann BC on the 2nd boundary facet.

(iii) F = pdedef.volumeInt(du, u, ut, dv, v, x, t, i) This function is used to define

Fi in the weak form (1), where v and dv are the test function v(i) and its gradient.

(iv) G = pdedef.boundaryInt(du, u, v, x, t, i, bfMark) This function is used to define

Gi in the weak form (1), where v is the test function v(i).

(v) R = pdedef.dirichletRes(u, x, t, i, bfMark) This function is used to define Ri in

(2).

• fixed step is an optional input logical variable, indicating whether or not a fixed step is used in

time integration. The default is false.

• relTol and absTol are optional input variables for the relative and absolute tolerances used for

time step selection. The defaults are relTol = 1e-4 and absTol = 1e-6.

• direct ls is an optional input logical variable, indicating whether or not the direct sparse matrix

solver is used for solving linear algebraic systems. When direct ls = false, the BiConjugate

Gradients Stabilized Method bicgstab is used. The default is true.

• ControlWeights is an optional input variable which is nonnegative vector of size (Nv ∗npde)× 1

used to define the weights of the components of the solution for the error estimation used in

time step selection.

• Unew, of size Nv × npde, is the new solution at time t + dt0.

• dt0 is the time stepsize actually used to integrate the physical PDEs.
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• dt1 is the time step size predicted for the next step.

The input and output variables for MovFEM_bvp() are similar to those of MovFEM(). The same weak

form (1) and (2) is used for both IBVPs and BVPs. In the latter case, t is a parameter that is not

used. Here we list the variables used only in the BVP solver.

• nonlinearsolver is an optional input variable for the method used for solving nonlinear algebraic

systems, with the choices being newtons and fsolve. The defacult is fsolve.

• MaxIter is an optional input variable for the maximum number of iterations allowed for the

solution of nonlinear algebraic systems. The default is MaxIter = 300.

• Tol is an optional input variable for the tolerance used in the solution of nonlinear algebraic

systems. The default is Tol = 1e-6.

The following two functions are used to compute the error when the exact solution is available in

the form U = uexact(t,x,varargin).

1. err = MovFEM_Error_P1L2(uexact,t,X,U,tri,tri_bf,varargin) This function computes

the L2 norm of the error in P1 finite element approximation.

2. err = MovFEM_Error_P1Linf(uexact,t,X,U,tri,tri_bf,varargin) This function computes

the L∞ norm of the error in P1 finite element approximation.

In the following we give several examples to explain how to define the PDE system through pdedef.

More examples can be found in the subdirectory ./examples. A typical flow chart for those examples

is shown in Fig. 1.

Set up initial

mesh; find

and fix corners

Define PDEs

and BCs

Set ICs;

Compute

adjusted mesh

using MovMesh()

Generate

new mesh

using MovMesh()

Integrate PDEs

for a time step

using MovFEM()

time integration loop

Figure 1: An MP (Mesh PDE – Physical PDE) procedure for moving mesh solution of IBVPs.

3.1 Burgers’ equation in 1D

This example, implemented in ex1d_burgers.m, is the IBVP of Burgers’ equation in 1D,

ut = εuxx − uux, x ∈ Ω ≡ (0, 1), t ∈ (0, 1] (3)

subject to the Dirichlet boundary condition

u(t, x) = uexact(t, x), x on ∂Ω, t ∈ (0, 1] (4)
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and the initial condition

u(0, x) = uexact(0, x), x ∈ Ω (5)

where ε = 10−3 and

uexact(t, x) =
0.1e

−x+0.5−4.95t
20ε + 0.5e

−x+0.5−0.75t
4ε + e

−x+0.375
2ε

e
−x+0.5−4.95t

20ε + e
−x+0.5−0.75t

4ε + e
−x+0.375

2ε

. (6)

The weak formulation of this example reads as∫
Ω

(utv + εuxvx + uuxv)dx = 0, ∀v ∈ V ≡ H1
0 (Ω). (7)

The definition of this example in the code is given as

% define PDE system and BCs

% all bcs are dirichlet so no need for marking boundary segments

pdedef.bfMark = ones(Nbf,1);

pdedef.bftype = ones(Nbf,npde);

pdedef.volumeInt = @pdedef_volumeInt;

pdedef.boundaryInt = @pdedef_boundaryInt;

pdedef.dirichletRes = @pdedef_dirichletRes;

... ...

function F = pdedef_volumeInt(du, u, ut, dv, v, x, t, ipde)

global epsilon;

F = ut(:,1).*v(:) + epsilon*du(:,1).*dv(:,1) + u(:,1).*du(:,1).*v(:);

function G = pdedef_boundaryInt(du, u, v, x, t, ipde, bfMark)

G = zeros(size(x,1),1);

function Res = pdedef_dirichletRes(u, x, t, ipde, bfMark)

Res = u - uexact(t, x);

3.2 The heat equation in 2D

This example, implemented in ex2d_heat.m, is the IBVP for the heat equation in 2D,

ut = uxx + uyy + (13π2 − 1)uexact(t, x, y), (x, y) ∈ Ω ≡ (0, 1)× (0, 1), t ∈ (0, 1] (8)

subject to the boundary conditions
u(t, x, y) = 0, (x, y) on x = 0 and y = 0, t ∈ (0, 1]
∂u
∂x = 2πe−t sin(3πy), (x, y) on x = 1, t ∈ (0, 1]
∂u
∂y = −3πe−t sin(2πx), (x, y) on y = 1, t ∈ (0, 1]

(9)
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and the initial condition

u(0, x, y) = uexact(0, x, y), (x, y) ∈ Ω. (10)

This problem has the exact solution

uexact(t, x, y) = e−t sin(2πx) sin(3πy). (11)

The weak formulation reads as∫
Ω

[
(utv + uxvx + uyvy)− (13π2 − 1) v uexact(t, x, y)

]
dxdy (12)

+

∫ 1

0

(
−2πe−t sin(3πy)

)
v(1, y)dy +

∫ 1

0

(
3πe−t sin(2πx)

)
v(x, 1)dx = 0, ∀v ∈ V

where V = {w ∈ H1(Ω), w = 0 on x = 0 and y = 0}. The definition of this example in the code is

given as

% define PDE system and BCs

% mark boundary segments

pdedef.bfMark = ones(Nbf,1); % for y = 0 (b1)

Xbfm = (X(tri_bf(:,1),:)+X(tri_bf(:,2),:))*0.5;

pdedef.bfMark(Xbfm(:,1)<1e-8) = 4; % for x = 0 (b4)

pdedef.bfMark(Xbfm(:,1)>1-1e-8) = 2; % for x = 1 (b2)

pdedef.bfMark(Xbfm(:,2)>1-1e-8) = 3; % for y = 1 (b3)

% define boundary types

pdedef.bftype = ones(Nbf,npde);

% for neumann bcs:

pdedef.bftype(pdedef.bfMark==2|pdedef.bfMark==3,npde) = 0;

pdedef.volumeInt = @pdedef_volumeInt;

pdedef.boundaryInt = @pdedef_boundaryInt;

pdedef.dirichletRes = @pdedef_dirichletRes;

... ...

function F = pdedef_volumeInt(du, u, ut, dv, v, x, t, ipde)

F = (13*pi*pi-1)*uexact(t,x);

F = ut(:,1).*v(:)+du(:,1).*dv(:,1)+du(:,2).*dv(:,2)-F.*v(:);

function G = pdedef_boundaryInt(du, u, v, x, t, ipde, bfMark)

G = zeros(size(x,1),1);

ID = find(bfMark==2);

G(ID) = -2*pi*exp(-t)*sin(3*pi*x(ID,2)).*v(ID);

ID = find(bfMark==3);

G(ID) = 3*pi*exp(-t)*sin(2*pi*x(ID,1)).*v(ID);

10



function Res = pdedef_dirichletRes(u, x, t, ipde, bfMark)

Res = zeros(size(x,1),1);

ID = find(bfMark==1|bfMark==4);

Res(ID) = u(ID,1)-0.0;

(0,0)

(0,16)

(15,0) (30,0) (60,0)

(15,4) (30,4)

1©

1©

1©

1©

1©

3©

3©

3©

3©

3©

3©

2©

Figure 2: The domain Ω and the marking of the boundary segments for Example 3.3.

3.3 A combustion model in 2D

This example, implemented in ex2d_combustion.m, is the IBVP for a combustion model (a system

of two PDEs) in 2D (see [4]),θt = θxx + θyy + β2

2LeY e
− β(1−θ)

(1−α(1−θ)) , (x, y) ∈ Ω, t ∈ (0, 60]

Yt = 1
Le(Yxx + Yyy)− β2

2LeY e
− β(1−θ)

(1−α(1−θ)) , (x, y) ∈ Ω, t ∈ (0, 60]
(13)

subject to the boundary conditions
θ = 1, Y = 0, on bfMark = 2
∂θ
∂n = 0, ∂Y

∂n = 0, on bfMark = 1
∂θ
∂n = −kθ, ∂Y

∂n = 0, on bfMark = 3

(14)

and the initial condition {
θ = 1, Y = 0, for x ≤ 7.5

θ = e7.5−x, Y = 1− eLe(7.5−x), for x > 7.5
(15)

where Ω is shown and the boundary segments are marked as in Fig. 2 and Le = 1, α = 0.8, β = 10,

and k = 0.1. The analytical expression of the exact solution is not available. The weak formulation

reads as ∫
Ω

(
θtv

(1) + θxv
(1)
x + θyv

(1)
y −

β2

2Le
Y v(1)e

− β(1−θ)
(1−α(1−θ))

)
dxdy +

∫
ΓbfMark = 3

kθv(1)ds (16)

+

∫
Ω

(
Ytv

(2) +
1

Le
Yxv

(2)
x +

1

Le
Yyv

(2)
y +

β2

2Le
Y v(2)e

− β(1−θ)
(1−α(1−θ))

)
dxdy
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. = 0, ∀v(1), v(2) ∈ V

where V = {v ∈ H1(Ω), v = 0 on bfMark = 2}. The definition of this example in the code is given as

% define PDE system and BCs

pdedef.bfMark = ones(Nbf,1);

Xbfm = (X(tri_bf(:,1),:)+X(tri_bf(:,2),:))*0.5;

pdedef.bfMark(Xbfm(:,1) < 1e-8) = 2;

pdedef.bfMark(abs(Xbfm(:,1)-15) < 1e-8) = 3;

pdedef.bfMark(abs(Xbfm(:,1)-30) < 1e-8) = 3;

pdedef.bfMark((abs(Xbfm(:,2)-4) < 1e-8) & ...

(Xbfm(:,1) > 15 & Xbfm(:,1) < 30)) = 3;

pdedef.bfMark((abs(Xbfm(:,2)-12) < 1e-8) & ...

(Xbfm(:,1) > 15 & Xbfm(:,1) < 30)) = 3;

pdedef.bftype = ones(Nbf,npde);

pdedef.bftype(pdedef.bfMark==1|pdedef.bfMark==3,:) = 0;

pdedef.volumeInt = @pdedef_volumeInt;

pdedef.boundaryInt = @pdedef_boundaryInt;

pdedef.dirichletRes = @pdedef_dirichletRes;

... ...

function F = pdedef_volumeInt(du, u, ut, dv, v, x, t, ipde)

beta = 10;

alpha = 0.8;

Le = 1;

w = beta^2/(2*Le)*u(:,2).*exp(-beta*(1-u(:,1))./(1-alpha*(1-u(:,1))));

if (ipde==1)

F = ut(:,1).*v+du(:,1).*dv(:,1)+du(:,2).*dv(:,2) - w.*v;

else

F = ut(:,2).*v+(du(:,3).*dv(:,1)+du(:,4).*dv(:,2))/Le + w.*v;

end

function G = pdedef_boundaryInt(du, u, v, x, t, ipde, bfMark)

k = 0.1;

G = zeros(size(x,1),1);

if ipde==1

ID = find(bfMark==3);

G(ID) = k*u(ID,1).*v(ID);

end
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function Res = pdedef_dirichletRes(u, x, t, ipde, bfMark)

Res = zeros(size(x,1),1);

ID = find(bfMark==2);

if (ipde==1)

Res(ID) = u(ID,1)-1;

else

Res(ID) = u(ID,2)-0;

end

3.4 Poisson’s equation in 3D

This example, implemented in ex3d_poisson.m, is the BVP for Poisson’s equation in 3D,

− (uxx + uyy + uzz) = f, (x, y, z) ∈ Ω ≡ (0, 1)× (0, 1)× (0, 1) (17)

subject to the boundary conditions{
∂u
∂x = 2π sin(3πy) sin(πz), (x, y, z) on ΓN

u = uexact(x, y, z), (x, y, z) on ΓD
(18)

where ΓN = {x = 1, 0 < y < 1, 0 < z < 1}, ΓD = ∂Ω \ ΓN , and f is chosen such that the exact

solution of this example is

uexact(x, y, z) = sin(2πx) sin(3πy) sin(πz). (19)

The weak formulation of this example reads as∫
Ω

(uxvx + uyvy + uzvz − fv)dxdydz +

∫
ΓN

(−2π sin(3πy) sin(πz))v(1, y, z)dydz = 0, ∀v ∈ V

where V = {w ∈ H1(Ω), w = 0 on ΓD}. The definition of this example in the code is given as

% define PDE system and BCs

pdedef.bfMark = ones(Nbf,1);

Xbfm = (X(tri_bf(:,1),:)+X(tri_bf(:,2),:)+X(tri_bf(:,3),:))/3;

pdedef.bfMark(Xbfm(:,1)>1-1e-8) = 2; % for x=1

pdedef.bftype = ones(Nbf,npde);

pdedef.bftype(pdedef.bfMark==2,npde) = 0; % neumann bc for x=1

pdedef.volumeInt = @pdedef_volumeInt;

pdedef.boundaryInt = @pdedef_boundaryInt;

pdedef.dirichletRes = @pdedef_dirichletRes;

13



... ...

function F = pdedef_volumeInt(du, u, ut, dv, v, x, t, ipde)

F = 14*pi^2*sin(2*pi*x(:,1)).*sin(3*pi*x(:,2)).*sin(pi*x(:,3));

F = du(:,1).*dv(:,1)+du(:,2).*dv(:,2)+du(:,3).*dv(:,3)-F.*v(:);

function G = pdedef_boundaryInt(du, u, v, x, t, ipde, bfMark)

G = zeros(size(x,1),1);

ID = find(bfMark==2);

G(ID) = -2*pi*sin(3*pi*x(ID,2)).*sin(pi*x(ID,3)).*v(ID);

function Res = pdedef_dirichletRes(u, x, t, ipde, bfMark)

Res = u(:,1) - uexact(t,x);
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