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Homogeneous Dirichlet BVP of the fractional Laplacian

Main task: We are concerned with the numerical solution of homogeneous Dirichlet boundary
value problem (BVP): {

(−∆)su = f , in Ω

u = 0, in Ωc ≡ Rd \ Ω

where Ω is a bounded domain of Rd (d ≥ 1) and (−∆)s is the fractional Laplacian (operator) of
order s ∈ (0, 1).

Representations of the fractional Laplacian:

Fourier transform representation

(−∆)su = F−1(|ξ|2sF(u))

Singular integral representation

(−∆)su(x) = Cd,s p.v.

∫
Rd

u(x)− u(y)
|x − y |d+2s

dy

= Cd,s p.v.

∫
Ω

u(x)− u(y)
|x − y |d+2s

dy + Cd,su(x)
∫
Ωc

1

|x − y |d+2s
dy

Several other representations ...
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Homogeneous Dirichlet BVP of the fractional Laplacian

Regularity of BVP’s solution:
Ros-Oton and Serra (2014):

u(x) ∼ dist(x , ∂Ω)s , near ∂Ω

u(x) ∈ C∞, in interior

Ros-Oton and Serra (2014):
∥u∥C s (Rd ) ≤ C∥f ∥L∞(Ω)

Acosta and Borthagaray (2017):

|u|
H
s+ 1

2
−0

(Ω)
≤


C∥f ∥

C
1
2
−s

(Ω)
, 0 < s < 1

2

C∥f ∥L∞(Ω), s = 1
2

C∥f ∥Cβ (Ω),
1
2
< s < 1 for some β > 0

(a) s = 0.5 (k = 0) (b) s = 0.5 (k = 5)
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Why consider fractional Laplacian, fractional-order differential equations?

Motivations:

Interesting in theory: 1st-order, 2nd-order, ... why not 0.5th-order or 1.5th-order?

Statistical mechanics: the concentration of particles performing Brownian motion (random
walks with short-range jumps) follows the standard diffusion equation while the
concentration of particles performing Lévy flights (random walks with long-range jumps)
satisfies a fractional diffusion equation.

Quantum mechanics: Klein-Gordon operators
√
−∆+m2 (tempered fractional Laplacian)

It has been reported that fractional models can give more accurate description of underlying
phenomena in image processing, finance, and biology, especially for anomalous dynamics
(compared to dynamics satisfying Gaussian distribution).

Good tool for use to model global interaction, long-range decay, and multiple scales.

References (Books, theses, and Reviews, incomplete list):

I. Podlubny: Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.

K. Diethelm: The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.

M. K. Ishteva: Properties and Applications of the Caputo Fractional Operator. Master
Thesis, Universität Karlsruke, 2005.

Lischke et al., JCP (2020): “What is the fractional Laplacian? A comparative review with
new results”
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Numerical solution of homogeneous Dirichlet problems

• Main challenges in numerical solution:

High cost: the stiffness matrix is a full matrix

Slow convergence (less than or equal to 1st order), due to low regularity of the solution

• It has attracted considerable attention in the last decade from researchers and a variety of
methods have been developed: Finite element, finite difference, spectral, meshfree, discrete
Galerkin, Monte Carlo methods).

Finite difference methods (incomplete list)

H. Wang and T. Basu (SIAM J. Sci. Comput., 2012): 1D, based on Grünwald-Letnikov
formula

Y. Huang and A. Oberman (SIAM J. Numer. Anal., 2014): 1D FDMs, prove O(h2−2s) in
L∞ for smooth solutions and O(hs) for non-smooth solutions

S. Duo, H. van Wyk, and Y. Zhang (J. Comput. Phys., 2018): new 1D scheme and prove
O(h2) for smooth solutions

N. Du, H. Sun, and H. Wang (Comput. Appl. Math., 2019): a volume penalized finite
difference scheme and a preconditioned Krylov subspace iterative algorithm

Z. Hao and R. Du (J. Comput. Phys., 2021): FDM and O(h2) for smooth solutions in L∞.

R. Han and S. Wu (SIAM J. Numer. Anal., 2022): prove O(| log h|h2−s) for 0 < s < 1 and
O(h2s) for s < 2/3 in L∞

M. Chen, W. Deng, C. Min, J. Shi, and M. Stynes (2023): prove N−min(rs,2−2s) on graded
meshes (DOI: 10.13140/RG.2.2.10784.15361)
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Numerical solution of homogeneous Dirichlet problems

Finite element methods (incomplete list)

G. Acosta and J. Borthagaray (SIAM J. Numer. Anal. 2017): linear finite elements, prove

O(h
1
2
−0) for uniform meshes and O(N− 1

d ) (for 1/2 < s < 1) for graded meshes in Hs

G. Acosta, F. Bersetche, and J. Borthagaray (Comput. Math. Appl. 2017): 2D FEM code

G. Acosta, J. Borthagaray, and N. Heuer (IMA J. Numer. Anal. 2018): nonhomogeneous
Dirichlet problems

J. Borthagaray, L. Del Pezzo, and S. Mart́ınez (J. Sci. Comput. 2018): O(hmin(1,s+1/2)−0)
for quasi-uniform meshes and O(N−(1+s)/d) for graded meshes in L2. Eigenvalue problems.

M. Ainsworth and C. Glusa (Comput. Methods Appl. Mech. Engrg. 2017, Contemporary
computational mathematics 2018): a sparse approximation to the stiffness matrix and an
efficient multigrid implementation. O(N−(1+s)/d ) for adaptive meshes in L2

M. Faustmann, M. Karkulik, and J. Melenk (SIAM J. Numer. Anal. 2022): Local
convergence for FEM

Weizhang Huang GoFD for fractional Laplacian March 7, 2025 9 / 35



Numerical solution of homogeneous Dirichlet problems

Spectral, DG, collocation, and meshfree methods (incomplete list)

G. Pang, W. Chen, and Z. Fu (J. Comput. Phys. 2015): RBF collocation (meshfree)

X. Zhang, M. Gunzburger, L. Ju (Comput. Methods Appl. Mech. Engrg. 2016): Collocation
method

F. Song, C. Xu, and G. Karniadakis (SIAM J. Sci. Comput. 2017): spectral method for
spectral fractional Laplacian

Q. Du, L. Ju, and J. Lu (Math. Comp. 2019): DG for time dependent problems

H. Antil, P. Dondl, and L. Striet (SIAM J. Sci. Comput. 2021): sinc function method for
spectral fractional Laplacian

J. Burkardt, Y. Wu, and Y. Zhang (SIAM J. Sci. Comput. 2021): meshfree pseudospectral
method

H. Li, R. Liu and L. Wang (Numer. Math. Theory Methods Appl. 2022): Hermite
spectral-Galerkin method
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Finite element approximation

Weak formulation

Cd,s

2

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))
|x − y |d+2s

dxdy =

∫
Ω
fvdx , ∀v ∈ H̃s(Ω)

or

Cd,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))
|x − y |d+2s

dxdy

+ Cd,s

∫
Ω

∫
Ωc

u(x)v(x)
|x − y |d+2s

dxdy =

∫
Ω
fvdx , ∀v ∈ H̃s(Ω)

Features of finite element approximation:

Need to compute 2d-dimensional singular integrals and integrals on unbounded domains.

Full stiffness matrix: costly to assemble

Full stiffness matrix: costly to carry out its multiplication with vectors: O(N2
v ) flops.

2D: for a mesh of size 102 × 102, Nv = 104 and N2
v = 108

3D: for a mesh of size 102 × 102 × 102, Nv = 106 and N2
v = 1012

Works for arbitrary bounded domains and with mesh adaptation

Sharp error estimates available: O(hmin(1,s+ 1
2
)−0) for quasi-uniform meshes and O(h̄1+s) for

graded and adaptive meshes in L2, h̄ = N−1/d
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Uniform-grid FD approximation based on Fourier transform

Fourier transform representation:

(−∆)su = F−1(|ξ|2sF(u))

In 2D:

(−∆)su(x , y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
̂(−∆)su(ξ, η)e ixξe iyηdξdη

̂(−∆)su(ξ, η) = (ξ2 + η2)s û(ξ, η)

Discrete Fourier transform (DFT): Consider a uniform infinite grid (lattice)

(xj , yk ) = (jhFD, khFD), j , k ∈ Z,

DFT and its inverse on this grid are given by

ǔ(ξ, η) =
∞∑

j=−∞

∞∑
k=−∞

uj,ke
−ixjξe−iykη

u(xj , yk ) =
h2FD
(2π)2

∫ π
hFD

− π
hFD

∫ π
hFD

− π
hFD

ǔ(ξ, η)e ixjξe iykηdξdη

=
1

(2π)2

∫ π

−π

∫ π

−π
ǔ(

ξ

hFD
,

η

hFD
)e ijξe ikηdξdη
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Uniform-grid FD approximation based on Fourier transform

Consider the 5-point FD approximation to the Laplacian:

(−∆h)u(xj , yk ) =
1

h2FD
(uj+1,k − 2uj,k + uj−1,k ) +

1

h2FD
(uj,k+1 − 2uj,k + uj,k−1)

Applying the DFT to the above equation, we get

ˇ(−∆h)u(ξ, η) =
1

h2FD

(
4 sin2(

ξhFD

2
) + 4 sin2(

ηhFD

2
)

)
ǔ(ξ, η).

The FD approximation of the fractional Laplacian is given by

(−∆h)
su(xj , yk ) =

h2FD
(2π)2

∫ π
hFD

− π
hFD

∫ π
hFD

− π
hFD

1

h2sFD

(
4 sin2(

ξhFD

2
) + 4 sin2(

ηhFD

2
)

)s

ǔ(ξ, η)e ijξe ikηdξdη

where

ǔ(ξ, η) =
∞∑

j=−∞

∞∑
k=−∞

uj,ke
−ixjξe−iykη
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Uniform-grid FD approximation based on Fourier transform

The FD approximation of the fractional Laplacian:

(−∆h)
su(xj , yk ) =

1

h2sFD

∞∑
m=−∞

∞∑
n=−∞

A(j,k),(m,n)um,n =
1

h2sFD

∞∑
m=−∞

∞∑
n=−∞

Tj−m,k−num,n

=
1

h2sFD

N∑
m=−N

N∑
n=−N

Tj−m,k−num,n ( for u = 0 on Rd \ Ω)

Tp,q ’s are the Fourier coefficients of
(
4 sin2( ξ

2
) + 4 sin2( η

2
)
)s

, i.e.,

Tp,q =
1

(2π)2

∫ π

−π

∫ π

−π

(
4 sin2(

ξ

2
) + 4 sin2(

η

2
)

)s

e ipξe iqηdξdη

T−p,−q = Tp,q , T−p,q = Tp,q , Tp,−q = Tp,q

They can be approximated using FFT (fast Fourier transform)

AFD is block Teoplitz matrix, symmetric and positive definite, and

λmin(AFD) ≥ Ch2sFD, λmax(AFD) ≤ C

AFDu can be computed using FFT in O(Nd logNd ) flops (almost linear about Nd )

Works only for rectangular/cubic domains; cannot be incorporated with mesh adaptation.
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GoFD (J. Shen and WH: 2024) for arbitrary bounded domains

Existing methods:

Finite difference methods: Efficient (using FFT), uniform rectangular meshes, simple domains

Finite element methods: Slow (with full stiffness matrix), unstructured meshes, arbitrary
domains

Aim: develop a method: efficient (via FFT), unstructured meshes, arbitrary domains
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GoFD (J. Shen and WH: 2024) for arbitrary bounded domains

(−∆)su = f in Ω, u = 0 in Ωc

=⇒
1

h2sFD
D−1

h (IFDh )TAFDI
FD
h u = f (1)

where

AFD: uniform-grid FD approx. of (−∆)s on TFD
IFDh : transfer matrix from Th to TFD (sparse)

Dh: a diagonal matrix formed by the column
sums of IFDh

Mesh Th (on which BVP is solved)
overlaid by Uniform grid TFD (on

which (−∆)s is discretized)

u = {u(x j ), j = 1, ....,Nv}, f = {f (x j ), j = 1, ....,Nv}, x j ’s: vertices of Th

(1) can be written into a symmetric system as

(IFDh )TAFDI
FD
h u = h2sFDDhf (2)

Theorem 1 (J. Shen and WH, 2024)

If IFDh has full column rank, then Dh is invertible, (IFDh )TAFDI
FD
h is symmetric and positive

definite, and thus (2) is solvable.
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GoFD (J. Shen and WH: 2024) for arbitrary bounded domains

Theorem 2 (J. Shen and WH, 2024)

Let IFDh be the transfer matrix associated with piecewise linear interpolation. If the uniform grid’s
spacing hFD satisfies

hFD ≤
amin

(d + 1)
√
d
,

where amin is the minimum height of Th, then IFDh has full column rank. In this case,

(IFDh )TAFDI
FD
h is symmetric and positive definite and thus invertible.

Features of GoFD:

(IFDh )TAFDI
FD
h is symmetric and positive definite and satisfies

λmin((I
FD
h )TAFDI

FD
h ) ≥ Ch2sFD(amin/h)

2d , λmax((I
FD
h )TAFDI

FD
h ) ≤ C

(IFDh )TAFDI
FD
h u can be carried out via FFT and therefore,

(IFDh )TAFDI
FD
h u = h2sFDDhf

can be solved efficiently using Krylov subspace iteration methods (e.g. Conjugate Gradient).

Preconditioners based on ILU (J. Shen and WH 2024).

Works for any bounded domain and with mesh adaptation.

Convergence order will be demonstrated by numerical examples.
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The MMPDE moving mesh method

Mesh terminology:

Th = {K}: a simplicial mesh for Ω ⊂ Rd (d = 1, 2, 3, ...)

N: the number of elements, Nv : the number of vertices, K̂ : the master element

FK : K̂ → K is the affine mapping and F ′
K is the Jacobian matrix of FK .

FK
K̂ K

Edge matrix of K : EK = [xK
1 − xK

0 , ..., x
K
d − xK

0 ]

Edge matrix of K̂ : Ê = [ξ1 − ξ0, ..., ξd − ξ0]

Relation between F ′
K , EK , and Ê :

x = FK (ξ) = F ′
K (ξ − ξK0 ) + xK

0 =⇒ EK = F ′
K Ê =⇒ F ′

K = EK Ê
−1

JK = (F ′
K )

−1 = ÊE−1
K

Use the metric tensor (monitor function) M = M(x) to control mesh concentration on Ω.
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The MMPDE moving mesh method

Given a meshing energy/functional Ih[Th] =
∑

K |K |G(JK , det(JK ),MK ), the MMPDE approach
defines the mesh nodal velocities as a gradient system of the energy:

dx i

dt
= −

Pi

τ

(
∂Ih

∂x i

)T

=
Pi

τ

∑
K∈ωi

|K |vK
iK
, i = 1, ...,Nv

τ > 0 is used to control the response time of the mesh movement to the changes in M
Pi > 0 is chosen to make the equation invariant under the scaling transformation of M
ωi is the element patch associated with x i

iK is the local index of x i on K

vK
iK
’s are the local velocities given by


(vK

1 )
T

.

.

.

(vK
d )

T

 = − GE−1
K + E−1

K

∂G

∂J
ÊE−1

K +
∂G

∂ det(J)
det(Ê)

det(EK )
E−1
K −

1

d + 1

d∑
j=0

tr

(
∂G

∂M
Mj,K

)
(E−1

K )j
.
.
.

(E−1
K )j


(vK

0 )
T

= −
d∑

k=1

(vK
k )

T −
d∑

j=0

tr

(
∂G

∂M
Mj,K

)
(E−1

K )j

Mj,K = M(xK
j ), (E−1

K )j : the j-th row of E−1
K
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The MMPDE moving mesh method

Theorem 6.1 (Kamenski & WH, Math Comput 2018)

Assume that the metric tensor is bounded

m I ≤ M(x) ≤ m I, ∀x ∈ Ω

for some positive constants m and m, and the meshing functional satisfies the coercivity condition

Ih =
∑
K

|K |G(JK , det(JK ),MK ) : G(J, det(J),M, x) ≥ α
[
tr(JM−1JT )

]q
− β, ∀x ∈ Ω,

with q > d/2 and positive constants α and β. If the initial mesh is nonsingular, then

The mesh governed by the x-formulation of MMPDE will be nonsingular for t > 0;

Specifically, the minimal height and volume of K are bounded below by

aK ≥ C(T 0
h ) m

− d
2(2q−d)

− 1
2 N

− 2q
d(2q−d) , ∀K ∈ Th, ∀t > 0

|K | ≥ C(T 0
h ) m

− d2

2(2q−d)
− d

2 N
− 2q

(2q−d) , ∀K ∈ Th, ∀t > 0

1 Holds for fully discrete MMPDE if ∆t is sufficiently small (depending on m and N).

2 Holds for any (convex or concave) domain in any dimension.

3 Works for the equidistribution–alignment functional and other meshing functionals.
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The MMPDE moving mesh method

M-uniform mesh approach and equidistribution & alignment:

Th is said to be M-uniform if it is uniform in the metric M = M(x).

Equivalently, all of its elements have the same size and are similar to K̂ , measured in M.

An M-uniform mesh satisfies the equidistribution condition (for element size)

|K |
√

det(MK ) =
1

N
σh, ∀K ∈ Th

(
σh =

∑
K

|K |
√

det(MK )

)

and the alignment condition (for element similarity – shape & orientation)

1

d
tr((F ′

K )
TMKF

′
K ) = det((F ′

K )
TMKF

′
K )

1
d , ∀K ∈ Th

An energy functional associated with these conditions is (JK = (F ′
K )

−1, MK = M(xK ))

Ih[Th] =
∑
K

|K |
√

det(MK )

(
θ
(
tr(JKM−1

K JTK )
) dp

2
+ (1− 2θ)d

dp
2

(
det(JK )√
det(MK )

)p)
≡
∑
K

|K |G(JK , det(JK ),MK )

where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters. Magic choice: θ = 1/3, p = 2.
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The MMPDE moving mesh method

The derivatives of G wrt J, det(J), and M can be found using scalar-by-matrix differentiation as

G = θ
√

det(M)
(
tr(JM−1JT )

) dp
2
+ (1− 2θ)d

dp
2

√
det(M)

(
det(J)√
det(M)

)p

∂G

∂J
= dpθ

√
det(M)

(
tr(JM−1JT )

) dp
2
−1

M−1JT

∂G

∂ det(J)
= p(1− 2θ)d

dp
2 det(M)

1−p
2 det(J)p−1

∂G

∂M
= −

dpθ

2

√
det(M)

(
tr(JM−1JT )

) dp
2
−1

M−1JT JM−1

+
θ

2

√
det(M)

(
tr(JM−1JT )

) dp
2 M−1

+
(1− p)(1− 2θ)d

dp
2

2
det(M)

1−p
2 det(J)pM−1

Pi = det(M(x i ))
p−1
2
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Example 1

Example 1: (−∆)su =
22sΓ(1+s+k)Γ( d

2
+s+k)

k! Γ( d
2
+k)

· Ps, d
2
−1

k

(
2|x |2 − 1

)
, in Ω ≡ B1(0)

u = 0, in B1(0)c

where B1(0) is the unit ball and P
s, d

2
−1

k (·) is the Jacobi polynomial of degree k with parameters

(s, d
2
− 1). The exact solution is

u = (1− |x |2)α+P
α, d

2
−1

k

(
2|x |2 − 1

)
Remarks

Adaptive meshes are obtained with the Moving Mesh PDE method (MMPDE) (Russell, Ren,
and WH 1994 and 2010).

Results are shown for k = 0 and k = 5 in 1D, 2D, and 3D
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Example 1 - 1D

For quasi-uniform meshes: O(hs) in L∞ norm and O(hmin(1,0.5+s)) in L2 norm, consistent with
convergence order proved and numerically demonstrated for finite element approximation

102 103
10-8

10-6

10-4

10-2

100

(a) s = 0.25

102 103
10-8

10-6

10-4

10-2

100

(b) s = 0.5

102 103
10-8

10-6

10-4

10-2

100

(c) s = 0.75

For adaptive meshes: O(h̄s+0.5) in L∞ norm and O(h̄2) in L2 norm, better than convergence
order proved for finite element approximation. h̄ = 1/N.

102 103
10-8

10-6

10-4

10-2

100

(a) s = 0.25

102 103
10-8

10-6

10-4
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100

(b) s = 0.5

102 103
10-8

10-6

10-4

10-2

100

(c) s = 0.75
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Example 1 - 2D

(a) k = 0, s = 0.5 (b) k = 5, s = 0.5

Error in L2 norm: O(hmin(1,0.5+s)) for quasi-uniform meshes and O(h̄2) for adaptive meshes
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(a) k = 0, s = 0.5
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(b) k = 5, s = 0.5
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Example 1 - 3D (s = 0.5)

Adaptive meshes
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(a) k = 0
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(b) k = 5

Error in L2 norm: O(hmin(1,0.5+s)) for quasi-uniform meshes and O(h̄1+s) for adaptive meshes
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Example 2 - 2D (Batman-shaped domain with s = 0.75)

{
(−∆)su = 1, in Ω

u = 0, in Ωc

Analytical solution is not available. The reference solution (for computing the error) is obtained
with a fine adaptive mesh. Complex domain with holes inside and waving exterior boundary.
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(a) Adaptive mesh (b) Computed solution
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(c) Solution error

The error in L2 norm:

O(hmin(1,0.5+s)) for quasi-uniform meshes

O(h̄2) for adaptive meshes
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Example 3 - 2D (L-shaped domain with s = 0.5)

{
(−∆)su = 1, in Ω

u = 0, in Ωc

Analytical solution is not available. The reference solution (for computing the error) is obtained
with a fine adaptive mesh.
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(a) Adaptive mesh (b) Computed solution
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(c) Solution error

The error in L2 norm:

O(hmin(1,0.5+s)) for quasi-uniform meshes

O(h̄2) for adaptive meshes

Weizhang Huang GoFD for fractional Laplacian March 7, 2025 33 / 35



Outline

1 Fractional Laplacian and properties

2 Existing numerical methods - overview

3 Finite element approximation

4 Finite difference approximation on uniform grids

5 Grid-overlay finite difference method for arbitrary bounded domains

6 The MMPDE moving mesh method

7 Numerical examples

8 Conclusions

Weizhang Huang GoFD for fractional Laplacian March 7, 2025 34 / 35



Conclusions

GoFD for Dirichlet problems of the fractional Laplacian:

Relatively simple to code

Efficient implementation via FFT

Works for arbitrary bounded domains

Able to incorporate with mesh adaptation strategies

Solvability guaranteed when hFD ≤ amin/(d + 1)/
√
d

Effective preconditioners based on ILU and circulant matrix

Numerical examples show: GoFD has convergence order O(hmin(1,0.5+s)) for quasi-uniform
meshes and O(h̄2) for adaptive meshes, both in L2 norm.
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