Errata for

Weizhang Huang and Robert D. Russell, Adaptive Moving Mesh Methods (Springer, New York). 2011, XVII, 432p. 121 illus., 7 in color., Hardcover. ISBN: 978-1-4419-7915-5

Last updated on July 13, 2016

1. Page 321: (6.126):

$$
\begin{equation*}
M=\frac{f(\psi)}{\|\nabla \psi\|^{2}} \nabla \psi(\nabla \psi)^{T}+\nabla \psi^{\perp}\left(\nabla \psi^{\perp}\right)^{T}=I+\frac{f(\psi)-1}{\|\nabla \psi\|^{2}} \nabla \psi(\nabla \psi)^{T} \tag{6.126}
\end{equation*}
$$

should be

$$
\begin{equation*}
M=\frac{f(\psi)}{\|\nabla \psi\|^{2}} \nabla \psi(\nabla \psi)^{T}+\frac{1}{\|\nabla \psi\|^{2}} \nabla \psi^{\perp}\left(\nabla \psi^{\perp}\right)^{T}=I+\frac{f(\psi)-1}{\|\nabla \psi\|^{2}} \nabla \psi(\nabla \psi)^{T} \tag{6.126}
\end{equation*}
$$

2. Page 321: before (6.127): " $f=\rho "$ should be " $f=\rho^{2} "$.
3. Page 335: Table 6.1:

Table 6.1 Values for p in (6.153) and corresponding monitor functions and functionals.

p	Monitor Function (6.147)	Functional (6.139)
-1	$M=\frac{\tilde{M}}{\sqrt{\operatorname{det}(\tilde{M})}}$ with $\tilde{M}=I+\nabla u(\nabla u)^{T}$	(6.156) in $\S 6.5 .2$, Harmonic mapping
0	$M=I+\nabla u(\nabla u)^{T}$, arclength	(6.139)
1	$M=I \sqrt{1+\|\nabla u\|^{2}}$, scalar-matrix	(6.132), Variable diffusion

It should be

Table 6.1 Values for p in (6.153) and corresponding monitor functions and functionals.

p	Monitor Function (6.148)	Functional (6.139)		
-1	$M=\frac{\tilde{M}}{\sqrt{\operatorname{det}(\tilde{M})}}$ with $\tilde{M}=I+\nabla u(\nabla u)^{T}$	(6.156) in $\S 6.5 .2$, Harmonic mapping		
0	$M=\left(I+\nabla u(\nabla u)^{T}\right)^{1 / 2}$, arclength	(6.139)		
1	$M=I \sqrt{1+\\|\nabla u\\|^{2}}$, scalar-matrix	(6.132), Variable diffusion		

4. Page 335, (6.152):

$$
\begin{align*}
& \boldsymbol{v}_{1}=\nabla u /|\nabla u|, \quad \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d} \text { are orthogonal complements of } \boldsymbol{v}_{1}, \\
& \lambda_{1}=\sqrt{1+|\nabla u|^{2}}, \quad \lambda_{2}, \ldots, \lambda_{d} \text { are functions of } \lambda_{1}, \tag{6.152}
\end{align*}
$$

should be

$$
\begin{align*}
& \boldsymbol{v}_{1}=\nabla u /\|\nabla u\|, \quad \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d} \text { are orthogonal complements of } \boldsymbol{v}_{1}, \\
& \lambda_{1}=\sqrt{1+\|\nabla u\|^{2}}, \quad \lambda_{2}, \ldots, \lambda_{d} \text { are functions of } \lambda_{1}, \tag{6.152}
\end{align*}
$$

5. (20160713) Page 236, (5.64) and (5.65) missing exponent $\frac{1}{d}$.
