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Abstract. An adaptive moving mesh method is presented for numerical sim-

ulation of two dimensional groundwater flow and transport problems. A se-

lection of problems are considered, including advection dominated chemical

transport and reaction, solute transport from contamination sources, transport

of nonaqueous phase liquids (NAPLs) in an aquifer, and coupling of ground-
water flow with NAPL transport. Numerical results show that the adaptive
moving mesh method is able to capture sharp moving fronts and detect the
emerging of new fronts.

1. Introduction

Groundwater resources are vital to the natural environment, social welfare,
and economic health. In the past two decades, numerical simulation has proved to
be an effective tool for simulating and predicting behaviors of chemical contami-
nation in the subsurface that can degrade groundwater quality. Indeed, a variety
of algorithms and software have been developed for the numerical simulation of
groundwater flow and transport, e.g., see [25, 31] and references therein. Mean-
while, the quest for more accurate and efficient numerical methods remains active.
This is especially true for problems exhibiting sharp moving fronts, for which con-
ventional methods tend to produce oscillatory solutions and excessive numerical
dispersion in regions around sharp fronts.

It has been amply demonstrated that, by placing more mesh nodes in the re-
gions around sharp fronts than in the rest of the domain, mesh adaptation provides
an effective tool in reducing numerical dispersion and oscillation while enhanc-
ing the efficiency and accuracy of numerical simulation. Roughly speaking, mesh
adaptation can be cast into two main categories, the refinement method and the dy-
namic or moving mesh method. The first type of method is conceptually simpler. It
achieves mesh adaptivity by adding or removing mesh nodes locally. The refinement
method has been successfully applied to a number of groundwater problems in one
and two dimensions. For example, Yeh et al. [29] combine the method of character-
istics with local mesh refinement and effectively avoid the numerical dispersion and
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oscillation problem in solving advection-dispersion equations. Trompert [26] applies
local-uniform-mesh refinement to modeling transport in heterogeneous media.

On the other hand, the moving mesh method [11, 14, 23] achieves mesh adap-
tivity by relocating the node positions while keeping the number of mesh nodes and
the mesh connectivity fixed throughout the entire solution process. Since the size
of computation and data structure are kept fixed, it is much easier to implement
the moving mesh method than the refinement method. Moreover, the moving mesh
method often works better because the relocation of node positions improves the
alignment of mesh elements with the solution and thus the simulation accuracy.
Unfortunately, it has been known that it is difficult to formulate a reliable moving
mesh method in multi-dimensions. So far, the moving mesh method has been suc-
cessfully applied to groundwater modeling only in one dimension; see [8–10,17,30].

Progress has been made recently in developing more reliable moving mesh meth-
ods in multi-dimensions. The development has mainly focused on the variational
approach where the node positions are obtained by minimizing a functional measur-
ing some difficulty in approximating the physical solution. Such a functional can be
formulated as the energy functional of harmonic mappings [3,7,20,28] or based on a
Jabobian weighting [18], interpolation error estimates [12, 16], or a combination of
various mesh properties [1,2]. The reader is also referred to [4] for brief comparison
of variational-type moving mesh methods with those based on mesh velocity.

In this work, we focus on a particular variational-type moving mesh method,
the so-called moving mesh PDE (MMPDE) approach developed by Huang et al.
[14, 15]. With this approach, adaptive moving meshes are generated as images
of a fixed computational mesh in the auxiliary domain through a time dependent
coordinate transformation. The transformation is obtained as the solution of the
gradient flow equation of an adaptation functional which is related to the well-
known equidistribution principle [6] and measures the difficulty in approximating
the solution. Since the mesh nodes are continuously relocated and dynamically
adapted to solution behavior, the MMPDE moving mesh method provides an ideal
adaptive strategy to capture evolving sharp fronts without using a large number of
grid points. In [17], the method has been used to model a range of one dimensional
groundwater problems, including of advection dominated chemical transport and
reaction, non-linear infiltration in soil, and the coupling of density dependent flow
and transport.

The objective of this paper is to investigate the applicability of the MMPDE
moving mesh method to two dimensional groundwater flow and transport problems.
Although the moving mesh method has been successfully applied to a number of one
dimensional groundwater problems [8–10, 17, 30], there lacks in published work in
two dimensions. Moreover, it is far from clear that the method is necessarily able to
capture sharp two dimensional moving fronts. This is because two dimensional mov-
ing fronts have far more complicated structures and thus more difficult to simulate
and track. For demonstration purpose, a range of problems common in groundwa-
ter flow and transport are considered. They include advection dominated chemical
transport and reaction, solute transport from contamination sources, transport of
nonaqueous phase liquids (NAPLs) in an aquifer, and coupling of groundwater flow
with NAPL transport.

The paper is organized as follows. The MMPDE moving mesh method and its
implementation are presented in section 2. In section 3, the groundwater problems
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are described. The simulation results using the adaptive moving mesh method are
also given in the same section. Finally, the summary and comments are given in
Section 4.

2. The MMPDE moving mesh method

The MMPDE moving mesh method is developed in [14] in one dimension and in
[15] for multi-dimensional problems. The basic idea is to define the time-dependent
coordinate transformation needed for generating adaptive meshes as the solution
of an MMPDE (moving mesh PDE), which in turn is defined as the gradient flow
equation of an adaptation functional measuring the difficulty in approximating the
physical solution. The physical PDE is discretized and integrated with the quasi-
Lagrange approach where the effect of mesh movement is reflected by extra terms
involving mesh velocity in the transformed physical PDE.

For the clarity of presentation, the MMPDE moving mesh method is described
for the following simplified version of the advection-dispersion-reaction equation
(ADRE), one of typical mathematical models describing chemical transport in the
subsurface:

(2.1) R
∂C

∂t
=

∂

∂x

(

D
∂C

∂x

)

+
∂

∂y

(

D
∂C

∂y

)

− V1

∂C

∂x
− V2

∂C

∂y
− λRC,

where C = C(t, x, y) is the concentration of a certain type of chemical, D =
D(t, x, y) is the dispersivity, V = (V1(t, x, y), V2(t, x, y)) is the Darcy velocity, R is
the retardation factor, and λ is the reaction factor. It should be emphasized that
the method can be straightforwardly applied to other systems.

2.1. Spatial discretization on a moving mesh. In a moving mesh method,
the mesh is generated as the image of a uniform logical mesh under the coordinate
transformation (denoted by x = x(t, ξ, η), y = y(t, ξ, η)) from the logical domain
(Ωc) to the physical domain (Ω). As a common practice, we choose the logical
domain as the the unit square, i.e., Ωc = (0, 1)× (0, 1). Given two positive integers
J and K, let ∆ξ = 1/J and ∆η = 1/K. With the uniform logical mesh being
denoted by

(2.2) ξj = j∆ξ, ηk = k∆η j = 0, ..., J, k = 0, ...,K

the moving mesh can be written as

(2.3) xj,k(t) = x(t, ξj , ηk), yj,k(t) = y(t, ξj , ηk) j = 0, ..., J, k = 0, ...,K.

Finite differences are used for the spatial discretization of equation (2.1). To
this end, (2.1) is first transformed from the physical coordinates to the logical ones.
Let

c = c(t, ξ, η) = C(t, x(t, ξ, η), y(t, ξ, η)).

Then, (2.1) can be written in the new coordinates as
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− λRc,

where (xt, yt) is the mesh velocity. Note that the partial derivatives with respect
to x and y in (2.4) should be understood through the chain-rule, viz.,
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,
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with the transformation relations being given by J = xξyη − xηyξ and

(2.6)

[
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ηx ηy

]

=

[

xξ xη

yξ yη

]−1

=
1

J

[
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−yξ xξ

]

.

The approximation of the partial derivatives using central finite differences on the
uniform logical mesh is standard. For example,
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,

where ξx|j,k and ηx|j,k are calculated through (2.6). Some cautions may be needed
when discretizing the second order derivatives. Consider the first term on the right-
hand side of (2.4). In the new coordinates it reads as
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To obtain a compact and stable scheme, we use half-point differences for approxi-
mating the outer differentiation,
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The remaining differentiation can be approximated by the standard central differ-
encing and averaging, e.g.,
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.

It is noted that the effect of mesh movement is reflected in the transformed
equation (2.4) via the terms containing mesh velocity (xt, yt). For this reason,
(2.4) is often said to be of the quasi-Lagrange form. With this quasi-Lagrange
approach, there is no need for interpolation of the physical variable from the old
mesh to the new mesh. This is in contrast to the so-called mesh rezoning approach,
where the physical variable is interpolated from the old mesh to the new mesh and
the physical PDE is discretized and integrated on the new mesh (that is considered
fixed in the current time step); see [11,20] for more discussion on this approach.

2.2. The MMPDE approach of mesh movement. The idea of the MM-
PDE approach is to determine the time-dependent coordinate transformation needed
for generating adaptive meshes as the solution of an MMPDE, which in turn is
defined as the gradient flow equation of an adaptation functional measuring the
difficulty in approximating the physical solution. To measure the difficulty in the
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numerical approximation of the solution, we define the so-called arc-length monitor
function as

(2.7) M(x, y) = I + ∇C(∇C)T =

[

1 + C2
x CxCy

CxCy 1 + C2
y

]

.

Generally we expect that the mesh is generated such that it closely satisfies the so-
called equidistribution principle or the mesh density is approximately proportional
to the square root of the determinant of the monitor function (e.g., see [16]). In this
sense, the monitor function (2.7) places more mesh nodes in the regions of large
gradient of the solution C. It is known that the arc-length monitor function is the
simplest but not the best for all cases. The reader is referred to [16] for a more
sophisticated definition of the monitor function based on interpolation error.

Given the monitor function, the adaptation functional is defined for the inverse
coordinate transformation as

(2.8) I[ξ, η] =
1

2

∫

Ω

(

(∇ξ)T M−1∇ξ + (∇η)T M−1∇η
)

dxdy,

where ∇ = (∂/∂x, ∂/∂y) is the gradient operator. The MMPDE is then defined [13]
as the gradient flow equation of I[ξ, η],

(2.9)
∂ξ

∂t
=
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∇ ·

(

M−1∇ξ
)

,
∂η

∂t
=
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∇ ·

(
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)

,

where p = p(t, x, y) is a positive function (cf. its definition in (2.11)) and τ > 0 is
a user-prescribed parameter for adjusting the time scale of mesh movement. The
final form of the MMPDE is obtained by interchanging the roles of the independent
and dependent variables in (2.9),
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,(2.10)

where
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,

p =
√

a2
11 + a2

22 + b2
1 + b2

2.(2.11)

Central finite differences are used to discretize the mesh equation (2.10) on the
uniform logical mesh. In our computation, τ is taken as τ = 0.01, and this value
seems to work well for all the tested cases .

2.3. Time integration and solution procedure. In principle, the physical
PDE (2.4) and the MMPDE (2.10) can be integrated in time either simultane-
ously or alternately. However, alternating solution seems more realistic in multi-
dimensions since it voids the highly nonlinear coupling of the mesh and physical
solution and preserves many structures such as ellipticity and sparsity in each of
the mesh and physical PDEs. The following alternating procedure is used in our
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computations. Here, ∆t is the time step size associated with the physical PDE and
∆tmesh for that related to the MMPDE.

Alternating Procedure: Assume that the physical solution cn, the
mesh (xn, yn), and a time step size ∆tn are given at time t = tn.

(i) Compute the monitor function Mn(x, y)=M(tn, x, y) using cn and (xn,yn).
The solution derivatives used in M are calculated using a gradient recov-
ery technique similar to that developed by Zienkiewicz and Zhu [32, 33]
based on the nodal values of the computed solution. Mn is understood as
a continuous function in the sense of interpolation.

(ii) Integrate the MMPDE (2.10) over the time period [tn, tn + ∆tn] using
variable step size ∆tmesh,n and monitor function M(x, y) = Mn(x, y).
The MMPDE is discretized in time using the backward Euler scheme
with the coefficients a11, a12, a22, b1, and b2 being calculated at tn. More
than one sub-step may be needed for the integration to reach t = tn+∆tn.
When this happens, the monitor function is updated for each sub-step via
linear interpolation. The obtained mesh is denoted by (xn+1, yn+1).

(iii) Integrate the physical PDE (2.4) with a fixed or variable step size. The
equation is discretized in time using the Singly Diagonally Implicit Runge-
Kutta scheme [5]. The mesh and mesh velocity are calculated using linear
interpolation:

x(t) =
t − tn
∆tn

xn+1 +
tn + ∆tn − t

∆tn
xn, y(t) =

t − tn
∆tn

yn+1 +
tn + ∆tn − t

∆tn
yn.

(iv) When a variable step size is used in step (iii), the physical PDE may

actually be integrated over a smaller step ∆̂tn < ∆tn. In this case, the
mesh at the actual new time level tn+1 = tn + ∆̂tn should be updated as
(xn+1, yn+1) := (x(tn+1), y(tn+1)).

(v) Go to the next step with the step size predicted by the physical PDE
solver.

3. Applications

Example 3.1: Advection dominated chemical transport and reac-
tion. Contaminant in form of ions, molecules, or particles undergoes multiple and
complicated processes including transport, chemical, and biological ones in water
environment. The transport process is mainly due to advection and dispersion.
The chemical process covers acid-base reactions, solution, volatilization, precipita-
tion, solute reactions, oxidation-reduction reactions, hydrolysis reaction, isotropic
reactions, adsorption, and desorption. The biological process covers bacterias and
virus activities. A quantitative description of these processes is prerequisite to the
successful protection of water quality. The advection-dispersion-reaction equation
(ADRE), Eq. (2.1), is one of most commonly used mathematical models describ-
ing these processes in geohydrology [19]. The equation can become advection-
dominated or dispersion-dominated depending on the magnitude of the aquifer
permeability and Darcy velocity. The challenge in the numerical solution of this
equation is to capture the chemical transport and reaction front without intro-
ducing erroneous instability and numerical dispersion while maintaining reasonable
computational efficiency. The physical domain is taken as Ω = (0, 1)× (0, 1) in our
computations.
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We now consider a case which essentially is one-dimensional. We choose this
test example because it has the exact solution and can be used to verify the com-
puter code. Moreover, the one dimensional version of the ADRE with the same
exact solution has been used as an example for testing the one dimensional MM-
PDE moving mesh method in [17].

For this case, the physical parameters are taken as D(t, x, y) = D = 10−5,
V1(t, x, y) = V = 1, V2(t, x, y) = 0, and R = 1.1, and λ = 1.1. The initial and
boundary conditions are defined as
(3.1)

C(0, x, y) = 0, C(t, 0, y) = 1, C(t, 1, y) = C∗,
∂C

∂y
(t, x, 0) =

∂C

∂y
(t, x, 1) = 0,

where C∗ is a constant taken as the value at x = 1 of the exact solution [19,27]

C(x, t) =
1

2
exp

(

V x

2D

)

[

exp

(

−
√

V 2 + 4DλRx

2D

)

erfc

(

x −
√

V 2 + 4DλRt/R
√

4Dt/R

)

+ exp

(√
V 2 + 4DλRx

2D

)

erfc

(

x +
√

V 2 + 4DλRt/R
√

4Dt/R

)]

.

A typical adaptive mesh and the solution obtained thereon are shown in Fig. 1.
The chemical reaction front is captured with the adaptive moving mesh. The results
are in good agreement with the one dimensional ones obtained in [17].

Figure 1. Example 3.1. Adaptive moving mesh (first row) and
computed solution (second row) for ADRE.
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Example 3.2: Solute transport from contamination sources in a het-
erogeneous aquifer. Solute transport from contamination sources in a heteroge-
neous aquifer is studied in this example. The governing equation is given by ADRE
(2.1). The physical parameters are taken as D(t, x, y) = D = 10−5, R = 1, λ = 0,
and

V1(t, x, y) = 1 − 0.1(1 + x2 − y2), V2(t, x, y) = 0.

We first consider the case with a single source. The boundary conditions on the
south, north, and east sides of the domain are flux free and the initial condition
is zero everywhere. The source is placed on the west side of the domain. The
adaptive mesh and the computed concentration of the contaminant are presented
in Fig. 2. It can be seen that the concentration of the mesh nodes follows correctly
with that of the contaminant, which is moving southeast due to the non-uniform
Darcy velocity in the aquifer.

We now consider a case where three contamination sources, one on the west
boundary and the other two inside the domain, are disposed in different time inter-
vals. The results are shown in Fig. 3. The mesh adapts well to the concentration
variations and automatically captures the emerging of new peaks. This example
demonstrates that the adaptive moving mesh method provides a useful tool to
detect unknown or unexpected pollution sources in water environment.

Figure 2. Example 3.2. Adaptive moving mesh (first row) and
computed solution (second row) for ADRE with a single contami-
nation source.

Example 3.3. Transport of nonaqueous phase liquids (NAPLs) in
an aquifer. The system of governing equations becomes more complicated for
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Figure 3. Example 3.2. Adaptive moving mesh (first row) and
computed solution (second row) for ADRE with multiple contam-
ination sources.

multiphase flow and transport in groundwater environment; e.g. see [21, 24] and
references therein. Here we consider a specific case where nonaqueous phase liq-
uids (NAPLs) are dissolved into the aqueous phase [22]. The physical process is
described by two PDEs, one for the volumetric fraction of NAPL or NAPL content,

(3.2)
∂θn

∂t
= −kna (C∗

a − Ca)

ρn

,

and the other for the NAPL dissolved in water,

(3.3)
∂(θaCa)

∂t
= ∇ · (D∇Ca − qaCa) + kna (C∗

a − Ca),

where the subscripts “a” and “n” represent the aqueous and nonaqueous phases,
respectively, the superscript “∗” indicates an equilibrium condition with the com-
panion phase involved in the mass transfer, θ = θ(t, x, y) is the volumetric fraction,
Ca = Ca(t, x, y) is the concentration of the NAPL dissolved in water, ρ is density,
kna is a mass transfer coefficient representing a mass transfer process referenced to
a loss by the nonaqueous phase and a gain by the aqueous phase, qa is water flux,
and D is the dispersivity. It is noted that θn + θa = n, where n is the porosity con-
sidered to be constant here. The reader is referred to [22] for the derivations of the
governing equations and the corresponding initial and boundary conditions. The
values of the physical parameters are taken as those given in Table 15.1 of [22]. In
particular, the water flux is taken as a constant vector in the x-direction. The pa-
rameter values are representative of conditions encountered in the two-dimensional
physical experiements. The physical scenario of this case is that the aqueous phase
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is being flushed from the left boundary and the dissolved NAPL is being eluted
from the right boundary. The left and right boundary conditions are a specified
flux for the aqueous phase, while the top and bottom boundary conditions are no-
flow. The initial residual NAPL saturation and other parameters are homogeneous,
a typical laboratory condition, except that a perturbation in the residual NAPL
saturation near the left boundary where a portion of the boundary is NAPL free,
indicating that a clean water is flushing in. The development of this perturbation
into a dissolution profile is then observed.

The obtained results are shown in Fig. 4 for mesh evolution, NAPL, and
dissolved NAPL in water. It can be observed that a clean inflow from the west
boundary washes out NAPL and reduces dissolved NAPL in water in a channel
zone with time. The movements of the front and the boundary of the channel are
captured correctly with the adaptive mesh. Once again the results show that the
adaptive moving mesh method holds a great promise for solving multiphase flow
and transport problems such as NAPL dissolution.

Example 3.4. Coupling of groundwater flow and NAPL transport.
A more realistic modeling of the NAPL transport requires consideration of the
coupling with the water flow. In this situation, in addition to equations (3.2) and
(3.3), another equation is needed for the aqueous phase pressure pa = pa(t, x, y),
viz.,

(3.4) 0 = ∇ ·
(

k kra

µ
(∇pa − ρag∇x)

)

+

(

1

ρa

− 1

ρn

)

kna(C∗

a − Ca),

where k is permeability, kra is relative permeability, µ is viscosity, g is the gravity
constant, and x is the vertical coordinate. Unlike the previous example, the water
flux in the equation (3.3) is now given by Darcy’s law,

qa = −k kra

µ
(∇pa − ρag∇x) .

The values of other physical parameters are taken from Table 15.1 of [22]. Similar
phenomena can be observed from the computational results (cf. Fig. 5). This
seems reasonable since the water flux remains stable and has a similar profile as
the one used in Example 3.3 as far as the water pressure gradient is maintained.

4. Summary and comments

The MMPDE (moving mesh PDE) moving mesh method developed in [14, 15]
has been presented and applied to the numerical simulation of groundwater flow and
transport problems. A range of problems have been considered, including advection
dominated chemical transport and reaction, solute transport from contamination
sources, transport of nonaqueous phase liquids (NAPLs) in an aquifer, and coupling
of groundwater flow with NAPL transport. Numerical results have demonstrated
that the MMPDE moving mesh method is able to capture sharp moving fronts and
detect the emerging of new fronts. This consolidates the findings in a previous
work [17] for one dimensional groundwater problems.

It should be pointed out that the investigations presented in this work are still
at a preliminary stage and more work has yet to be done. For example, we have
used a simple adaptation functional (2.8) and the arc-length monitor function (2.7)
for mesh movement. For more precise control of mesh adaptation and for better
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Figure 4. Example 3.3. Adaptive moving mesh (first row), NAPL
(second row), and dissolved NAPL in water (third row) for the
NAPL problem.

simulation accuracy, it would be better to use more sophisticated functionals and
monitor functions such as those developed in [12,16] based on interpolation error.
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Figure 5. Example 3.4. Adaptive moving mesh (first row), NAPL
(second row), dissolved NAPL in water (third row), and aqueous
phase pressure (fourth row) for the NAPL-flow coupling problem.



MOVING MESH MODELING FOR GROUNDWATER FLOW AND TRANSPORT 13

References

1. J. U. Brackbill, An adaptive grid with directional control, J. Comput. Phys. 108 (1993), 38 –
50.

2. J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions,

J. Comput. Phys. 46 (1982), 342 – 368.

3. W. Cao, W. Huang, and R. D. Russell, An r-adaptive finite element method based upon

moving mesh pdes, J. Comp. Phys. 149 (1999), 221 – 244.

4. , Approaches for generating moving adaptive meshes: location versus velocity, Appl.

Numer. Math. 47 (2003), 121 – 138.

5. J. R. Cash, Diagonally implicit runge-kutta formulae with error estimates, J. Inst. Math.

Appl. 24 (1979), 293 – 301.

6. C. de Boor, Good approximation by splines with variable knots, Spline Functions and Ap-

proximation Theory (A. Meir and A. Sharma, eds.), Birkhäuser Verlag, Basel und Stuttgart,
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