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Abstract

In this paper, we consider the numerical solution of time-dependent PDEs using a finite element method based
upon rh-adaptivity. An adaptive horizontal method of lines strategy equipped with a posteriori error estimates to
control the discretization through variable time steps and spatial grid adaptations is used. Our approach combines
an r-refinement method based upon solving so-called moving mesh PDEs with h-refinement. Numerical results are
presented to demonstrate the capabilities and benefits of combining mesh movement and local refinement.
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Keywords: Nonlinear time-dependent PDEs; Rosenbrock methods; Multilevel finite elements; Moving mesh methods; Local
refinement; A posteriori error estimates

1. Introduction

In the numerical simulation of multiscale dynamic processes an important aspect is to generate grids,
or meshes, adapted to the solutions. Numerous examples demonstrate that adaptive mesh strategies c:
greatly reduce the errors and the computational effort for finite element methods (FEMSs). This approach
has been applied in a wide range of important physical and industrial contexts such as problems in fluid
dynamics (e.g., reactive flow in a piston engine and flow around a pitching airfoil or moving bodies)
and semiconductor device fabrication (e.g., modeling oxide flow, crystal growth, or phase change).
Traditionally, the quite robust h-method is applied, where the mesh is locally refined or coarsened by
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Fig. 1. Approximation of the hyperbolic functiom = sech(50(x2 + y2 — 0.09)) on 2 = {(x,y) € R% x2 + y2 < 1}
r-refinement withV = 817 yields an errone||L2(_Q) = 3.55E-2 (left), h-refinement withv =541 yields||e||L2(_Q) =191E-2
(middle), and rh-refinement witlv = 541 yields||e||L2<Q) = 1.57E-2 (right). While the r-method wastes too many nodes,

the combined rh-method results in a mesh well-fitted to the exponentional behaviour of the function and shows its potential

compared to the pure h-method.

adding or deleting mesh points. This is often combined with the p-method, for which the polynomial
degree in each element is selected in accordance with the smoothness properties of the solution. The
hp-adaptive FEM has proven successful at accurately resolving and following important solution features
for a wide variety of practical problems [5,37].

Our goal here is to complement the h-adaptive strategy with an r-method, which dynamically
redistributes the mesh points in time. As is well-known, moving mesh methods are superior at reducing
dispersive errors in the vicinity of wave fronts while local refinement methods can, in principle, add
enough degrees of freedom to resolve any fine scale structure. We expect that combining mesh movemen
with local refinement generally will not only make the global error control possible for the r-method, but
also avoid the need for excessive local refinements (cf. Fig. 1), and produce grids that are better aligned
with and closely follow the solution features.

Not surprisingly, rh-adaptive methods have been considered to some extent in previous studies. Adjerid
and Flaherty [2] present a one-dimensional moving mesh FEM with local refinement for parabolic PDEs.
Their approach is extended by Arney and Flaherty [1] to the two-dimensional case, where clusters of
mesh points are built up and moved with an error-dependent speed. To prevent mesh tangling, Gropp [18]
introduces a local uniform refinement strategy with moving grids. Several techniques for the creation
and annihilation of moving nodes have been advocated by Kuprat [29]. Although no local refinement is
utilized in the two- and three-dimensional mesh update strategies proposed by Johnson and Tezduyar [28
and Nkonga and Guillard [33], they are also of special interest since they show the usefulness of moving
techniques for industrial applications. Capon and Jimack [12] applied hr-refinement based on local error
estimates to stationary Euler equations in 2D. Finally, in recent work Habashi and coworkers [14,21]
have investigated the potential of a so-called mesh optimization methodology (MOM), which has both r-
and h-refinement components, for higher-dimensional CFD problems.

A general and robust rh-method requires a well-posed general procedure to determine the movement
of the mesh points smoothly in time, especially in higher spatial dimensions. Miller, who first introduced
a type of moving FEM [32], and his coworkers propose using the finite element residuals to steer the
mesh movement [13]. Similar ideas are utilized by Baines [6]. We present in this paper an rh-method
that interconnects the h-refinement with a general moving mesh method developed recently in [26,27].
This r-method is based on the gradient flow equation of a functional which measures the approximation
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difficulty of the physical solution. It has been shown general and reliable for a variety of practical model
problems [9,11].

The basic idea of our rh-adaptive strategy is as follows: we first discretize both the physical and
moving mesh PDEs in time by a Rosenbrock—Wanner-type scheme. Then a finite element approximation
is applied in each time step. A hierarchical error estimator developed in [31] is used to construct the
monitor function for the moving mesh PDE and to move the grid accordingly. After moving the mesh,
we recalculate the physical solution and estimate the error. For elements with error estimates exceeding
the tolerance, local refinements are applied until the tolerance is completely satisfied. In regions with
errors far less than the tolerance, grid points are deleted. We test such an adaptive strategy with nonlinea
PDEs from fluid flow and combustion. Numerical results show that the combined rh-method reduces
significantly the number of degree of freedoms to achieve a prescribed error tolerance.

The paper is organized as follows. In Section 2 the basic physical PDEs and moving mesh PDEs are
described. The temporal and spatial discretization schemes are introduced in Section 3. After describing
the error estimation technique which is in turn used to define the monitor function in Section 4, the
adaptive algorithm based upon the rh-method is described in Section 5. We then give two numerical
examples to demonstrate the performance of the algorithm, followed by some conclusions.

2. Mode problem and moving mesh method
2.1. Model problem

We shall consider a system of physical PDEs of the form

H(x,t,u,Vu)ou=V - (D(x, tu, Vu)Vu) + F(x,t,u,Vu) in2 x1I,
B(x,t,u,Vu)u=>b(x,t,u) onos2 x I, (2.1)
u(x,to) =uop(x) ing,

where I = (1o, 1] is a given time intervalf2 ¢ R? is a bounded open domain with smooth boundary
982, andV = (9., 9,)" is the gradient operator. The boundary operdtatefines an appropriate system

of boundary conditions such that there exists a unique isolated vector-valued sadgtion for all

timer € I. Eq. (2.1) is quite general and covers a wide variety of practically relevant problems such as
reaction—diffusion and Navier—Stokes equations.

2.2. Moving mesh PDEs

To discretize (2.1) with an adaptive finite element method, we need to construct a time dependent
mesh, denoted a3,,(¢), on the domain2. It can be generated for each time lev&lith any of a variety
of mesh generators, such as a Delaunay triangulation or front advancing method. An alternative approach
is to start with an auxiliary domais. and a fixed mesl®” on it, and then take2, () as the image of
2" under a suitably defined mappiwngé, 1) : 2. — 2—see Fig. 2.

To determine the time-dependent mappind, ¢), Huang and Russell [26,27] propose using a time
dependent PDE system, the so-called moving mesh PDEs (MMPDESs), which are based on the elliptic
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Fig. 2. The moving mesh is the image of a reference mesh given @top) through a time-dependent coordinate transformation
x(&,1):2:— 2.

mesh generation methods. FoIIowing [281£, 1) is determined by solving the MMPDEs

MxGWJ_-E:l%u:G) +§: AxG}——ichxL (2.2)
i,j=1,2 aélaé/

where

Gt
Dij(x,G)=VE -G 'VE; and Ci(x,G)=—V§; - ( Z —sz‘),
i=1,2 9
and the so-called monitor functioi = G(u(x,t)) is a 2x 2 symmetric positive definite matrix. The
coefficientS(x, G) is used to adjust the time scale of mesh movement. Following Huang [23], we choose

S(x,G) =6 -/ (D11)? 4 (D222 + (C1)2 + (C2)2, (2.3)

where® is a user defined smoothing parameter. The sméllé, the faster the adaptive mesh responds
to changes of the monitor function, and the largeis, the smoother the mesh movement.

Itis clear from (2.2) that the monitor function is the link between the solution of the physical PDEs and
the adaptive mesh defined byé, r). A proper definition ofG is crucial for the construction of a mesh
well-adapted to the solution. Typically, one expects to have higher mesh density in regions where the
solution is steep or the error of the approximation is large. There are various forms of possible monitor
functions which emphasize different aspects of mesh qualities, such as concentration, orthogonality, or
alignment [10,26]. Here we choose the monitor funciidoto depend upon an a posteriori error estimate
of the local spatial discretization. Its specific definition is given in Section 4.2.

The MMPDEs (2.2) have to be supplemented with suitable boundary conditions. Dirichlet-type
boundary conditions are a straightforward and robust choice. They are used to fix corner points and to
incorporate temporal variations of the physical domain. We use Dirichlet boundary conditiar(§ for
determined from the solution of a one-dimensional MMPDE. More precisely, given a boundary segment
I' of 982, let I'. be the corresponding boundary segmend ©f.. Parameterizé™ and I, by arclength
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coordinateg ands, respectively. Then the mappingé, ¢) on I" is determined by the solutiof(s, r) of
the one-dimensional MMPDE
©d,¢ =M 51 *(MIZ¢ + 9,Md¢),

whereM is the projection of the two-dimensional monitor functiéralong the boundary, i.e., ifis the
unit tangent vector along the boundary thefigs, 1) =5 Gs.

2.3. Coupled physical and MMPDEs

Under the mapping (¢, r), we can transform the physical PDEs (2.1) into a system involving the
computational coordinatg, viz.,
H(x,t,4,JVa) (3, — d,x - J Vi)
= IV (D (x, 1,0, JTTVG) I TTVE) + F(x, 1,4, 7TVE) in 20 x 1,
B(x,t,4, J"Va)i =b(x,t,i) ond. x I,
(&, 10) =uo(x (&, 1)) ins2,
wheret =u(&,t) =u(x(,1),1), Visthe gradient operator with resApecEte: (€1, &), andJ = dx/0&
is the Jacobian of the mappingé&, ). The additional ternd,x - J~"Va on the left side can be viewed
as a correction for the convective effects of the mesh motion.
Recall thate (€, ) andu(x, r) are interconnected through the monitor funct@im the MMPDEs (2.2).

Both of them are time dependent unknown functions. Introducing a new solution ¥eetaii, x)T, we
rewrite Eqgs. (2.2) and (2.4) as an expanded system

P, U)o,U=f(t,U), tel,
{U(E,fo) =Uo(x (&, 10)).

(2.4)

(2.5)

where
P(1.U) = (H(td U) —H(r,Sl&Jg;T%) |
and
IV - (12D (x, 1,4, JTVR) I TTVE) + F(x, 1,8, J Vi)
Y Dy O 4 Y o)
ij=12 0§;05; S a&;

The initial and boundary conditions fd/ are taken from those in (2.1) and (2.2), respectively. This
system is highly nonlinear and stiff in general.

[, U)=

3. Time-space discretization

Eqg. (2.5) is discretized first in time and then in space, an approach which is known as Rothe’s method
or the horizontal method of lines. After discretizing in time we end up with a system of spatial problems
which are solved by the finite element method. The spatial discretization error can be assessed by standar
error estimators for stationary problems [7,31] and if necessary, the mesh can be altered within a time
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step. The adaptive Rothe’s method differs from the commonly used adaptive method of lines (MOL)
approach. The latter deletes or inserts mesh points only after completing the integration of the underlying
system over a time step and consequently may produce a sequence of meshes that lag in time. Moreove
local refinement in Rothe’s method in each time step improves the spatial accuracy of the advanced
solution and results in larger time steps (see [15]).

3.1. Timediscretization

Since we will incorporate the h-refinement into our spatial discretization, a suitable time integration
method for (2.5) should be able to easily and accurately handle the addition and deletion of unknowns
associated with the h-refinement. In this regard, one-step time integrators are preferred over multi-step
methods such as backward differentiation formulas (BDFs). When mesh points are added or deleted,
a multi-step method must usually be restarted at lower order, whereas a one-step method can continue a
higher order. Among the class of one-step methods, linearly implicit Rosenbrock—Wanner-type schemes
(ROW) are attractive since they completely avoid the solution of nonlinear problems, so no Newton-
like iteration need to be controlled. Working the Jacobian or an approximation of it directly into the
integration formula, ROW-methods possess optimal linear stability properties for stiff equations [22,34].
We apply the ROW-methods given in Lang [31], which are suitable for an error-controlled solution of
parabolic PDEs. Applied to the initial-value problem (2.5) with step sjze 0 an s-stage ROW-method
has the recursive form

1 1
P(tna Un) - An Um‘
Y

= f(tni, Upi) — Py, Uy) Z S U’ + (P(ta, Up) = Pltyi Upi)) Zni + T2 ¥iCa, -
i=1,...,s, "
where the internal values are given by
ti =t + 1, Uu=U, +Za,, e Zui=Q1—0)Z, +Z y,
j=1
and
Ay = 3 (fU) = P(t.U)Z),_, vy 7 g Cr(f.U) =Pt UZ),_, v y 7 7

The approximatiorU,, to the solutionU (z,) is used to compute a new approximate solution at time level
t.11:=t, + 7, Using a linear combination df,, and the solutions of (3.1), viz.,

Uy1=U, + Zm U, (3.2)
i=1

An approximation to the temporal derivativg/ for the next time step is constructed by computing

n+1 - Zn + Zm (Z Cl/ % U/ + (Gl l)Zn) . (33)

j=1
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Table 1

Set of coefficients for Ros2, which is of order 2(1)

y =1.70710678118654 700

a11 = 0.000000000000000€00
ap1 = 5.857864376269050€01
az = 0.000000000000000€00
¢11 = 5.85786437626905001
o1 = 1.171572875253810€00
22 = 5.857864376269050€01
1= 1.70710678118654700
Y2 = —1.707106781186547€00

m1 = 8.786796564403575e01
mp = 2.928932188134525e01

a1 = 0.000000000000006€00
a2 = 1.000000000000006€00

511 = 0.000000000000006€00
521 = 3.431457505076198€01
522 = 0.000000000000006€00

o1 = 0.000000000000006e00
o9 =5.857864376269056e01

m1 = 5.857864376269050e01
mp = 0.000000000000000e00

To start the above ROW-method, an approximatdyof o,U at ¢ is required. The stage numheand

the formula coefficients are chosen to obtain a desired order of consistency and good stability properties
for stiff equations. A nice feature of linearly implicit ROW-methods is that all linear systems for the
intermediate value®’/,,i =1, ..., s, involve the same operator. The boundary conditionslfprare

readily obtained applying the ROW-method (3.1) to the boundary conditiori$,fahich are understood

as algebraic equations of the form (2.5) whli, U) = 0 [31].

Various ROW-methods have been constructed in [31] to integrate systems of the form (2.5). In our
computations, we use the solver Ros2 [35] (see Table 1 for the defining formula coefficients), which has
second-order accuracy for arbitraty, andC,,. This property allows us to freeze the coefficients in the
MMPDEs (2.2) during one time step without order reduction. Specifically, for allz,, ¢,.1) we use
Djj(x,, G(u,)) instead ofD;; (x (1), G(u(x(t),t))) andC;(x,, G (u,)) instead ofC; (x(t), G (u(x(t), 1)))
fori, j =1,2. Herex, andu, denote approximations of the mappingand the solutiornt at,. Since
the position of mesh points need not to be determined as precisely as the solution of the physical PDE,
it is generally unnecessary to solve the MMPDES to very high accuracy. We have found the approach
of freezing the coefficients to be quite efficient and robust with respect to the choice of the constant
paramete® in (2.3).

The time step size is also adapted in order to control the temporal error. For ROW-methods, a second
solution of lower order, say, can be computed by an embedded formula

n+l—Z +Zm[(ZCU SUUm'i'(O'z_l)Z)

j=1

S
~ .
U1 =U,+ E m;U,;,
i=1

where the original weights; in (3.2) and (3.3) are simply replaced By. If p is the order oU,,, 1, we
call such a pair of formulas of ordex(p). The difference between these solutions is used to compute the
local error estimator

(3.4)

Iny1 = H Un+1 - ﬁ
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where|| - || is a weighted norm defined for vector-valued functions (vy, .. ., vq)T as

1/2
1 [ ?

ol == Z( L) > . (3.5)
q ATOL; + |Up+41ill o2, - RTOL;

i=1
The tolerances ATOLand RTOL are selected to accurately reflect the scale of the problem. The
predicted new time step is

_ . (TOLT -, \ Y+
rn+1:m|n<10,max<0.1, i (%) >>r,,, (3.6)

Tn-1 T

where TOLT is the prescribed error tolerance. This formula is related to a discrete Pl-controller first
established in the pioneering work of Gustaffson et al. [19,20].

3.2. Space discretization

Having discretized in time, we use the finite element method to solve Eq. (3.1) supplemented with
the discretized boundary conditions. LBt be an admissible finite element mesh@pat ¢ =¢,, and
SIcH 1(£2.) be the associated finite-dimensional space consisting of all continuous functions that are
polynomials of ordeg on each finite elemerft € 7, and that vanish on boundaries where Dirichlet-type
conditions are given. Taking thie(§2.)-inner product of (3.1) with test functiong € S/, the standard
Galerkin finite element approximatidii, ,; € S; for the intermediate valugg), is required to satisfy

h,ni

(LaU}, i @) = (rnin @) forallg e S;. (3.7)
Here, L, is the weak representation of the differential operator on the left side in (3.1),and
rm»(U;,,nl, e UZ,m'_l) stands for the entire right side in (3.1). Sintg is independent of the index

its calculation is required only once each time step. The finite element solution at the timg _levsl
computed as

Unnsr=Upn+ Y _miUj ;. (3.8)
i=1
with U, , being an approximation t&/(z,). The linear systems (3.7) are solved by a preconditioned
Krylov subspace method, viz., an efficient combination of Bi-CGSTAB [36] and an incomplete
LU-factorization.

4, Error estimates and monitor functions
4.1. Error estimates

Once allU;, ,; € S/ have been computed, an a posteriori error estimate can be employed to assess the
spatial error distribution. We adopt here a technique known as hierarchical error estimation—see, e.g.,
Bornemann et al. [8], Deuflhard et al. [16], Bank and Smith [4]. More precisely, let the approximation
subspaces? ™ admit a decomposition

STt = sl @ zIM, (4.1)
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where ZZ+l is the subspace spanned by all additional basis functions that are required to extend the
spaceS; to the higher order spacgj’”. Hierarchical error estimates are used to calculate the bound

on the spatial error by evaluating components in the s;ﬂé”é only. In Lang [31], this technique has

been carried over to time-dependent nonlinear problems. Following the approach developed there, an

a posteriori error estimatak, . 1(§) € Z,‘{+1 for the finite element solutiol/,, ., is defined as a linear
combination of terms of the form

En1(8) = Eno(§) + Y miEy (§), (4.2)

i=1

whereE, g € ZZ” measures the projection error of the initial valig,, and E,,; estimates the spatial
error of the intermediate valug,, .. More precisely, we computg o from the equation

(LnE o, ¢) = (Ln (Uh,n - Uh,n)a ¢) for all ¢ € ZZJrla (43)

with U,,,n representing the initial solution computed on a well-fitted mesh at #jiendU, ,, being its
projection ontoS;. (Were the computational mesh to be coarsenedt o estimates the resulting loss

of resolution for the previous finite element solutiﬁm,n.) The stage error estimatd,; € ZZ” satisfies
(LaEyis®) = (rai(Up 1+ Ents .. Up i1 + Enic1), @) — (LaUj i 9) (4.4)

forall¢ € ZZ”. The computation of the error estimat®By,, , only requires the solution of linear systems.
The expense of the error estimation can be further reduced by replacing system (4.4) with a block
diagonal approximation in a standard way [16,31]. The stage error estinfjtoase used successively to
improve the approximation of the nonlinear tergn Here, we apply linear finite elements on triangular
meshes and measure the spatial errors in the space of quadratic functions.

In our context of rh-refinement, the error estimal&gé) are in fact scaled such that we basically only
use spatial error estimates for thecomponent of solutiod/ = (@, x)" and not the nodes. That is, we
set RTOL = oo for all x-components in (3.5). As discussed previously, this is because our experience
has shown that control of spatial errors fbis generally sufficient to maintain adequate precision for
grid placement as well.

4.2. Monitor function

To construct the monitor functiotr, we follow [11] and first define an error functiaf), .1 which
describes the estimated error per unit area at each node of the physical domain. Specifically; Jetting
be a mesh point i82, (z,+1) and§ , = §(x , ,11) the corresponding mesh point ., we define

| Entallee,)
fasp) dé

whereC(§,) C £2. is the union of neighbouring grid cells havigg as one of their vertices. Clearly,
regions with larger€, 1 need higher mesh concentration. To avoid overcrowding the mesh points in
regions of maximum errors, we introduce a cut-off functior£,pf; as follows

0.8-max, &1(x,) if E1a(x,) > 0.8-max, £,41(x,),
gn+l(xp) otherwise.

gn+l(xp) = (45)

Eir1(x,) = {
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The monitor function is then defined as

Erra(x)) )2 g
maXxp 811+1(xp)

for all mesh pointse, in £2;,(7,11), Wwherea is an intensity parameter used to control the influence of the
error function&, 1 on the mesh concentration. The monitor function defined pointwise is extended to a
function G (x, t, 1) for all x € £2,,(¢,,1) by linear interpolation.

To increase the smoothness of the mesh distribution and also to reduce the stiffness of the MMPDEs
(2.2), it is common practice to smooth the monitor function by a local averaging. Given a non-negative
integerM, we use the monitor functio6™ (x, 1,1) defined by the iterative process

G(O)(xp, tht1) ' =G(x,, t,41) foralx,, m=01...M-1:
fc(sp) G(m) (x (Sa tn+l)v thrl) dg (47)
forall x .

This smoothing algorithm has proven to work quite satisfactorily in practice.

The parametera/ in (4.7) andw in (4.6) are user defined. Generally, largeand smallerM result
in more accurate mesh adaption, but make the MMPDEs harder to solve. While the optimal choices
of these parameters are clearly problem dependent, we found by experience that a good compromise
between accuracy and cost is with= 6 anda = 50.0 for many problems. These values will be used in
our computations in Section 6.

G(xp’tn+l) = 1+O[< (46)

G (x p, ty41) 1=

5. rh-adaptive algorithm

In this section, we describe the coupling of the r-method which involves solving system (2.5) with the
monitor function defined in (4.7) and the h-method which is based upon using a posteriori error estimates
introduced in (4.2).

Our refinement strategy consists of first calculating a preliminary finite element solitipn, and its
approximate errok, ,; on a given mesh,” for a time stepy,. If |E,,1]| > TOLX, the local quantities
nr = |Epallr, T € Zfo), are used to locate regions where greater resolution is needed. To this end, we
define a local error barriefys := y - max; 7, where O< y < 1 is a parameter. All element ¢ 7,
with nr larger than the barrief,,r are selected for refinement. To ensure that at least a certain percentage
of elements is refined, we iteratively redugg, by the factory. In our computations, we set= 0.8 and
repeat the selection process until at least 10% of all elements are marked for refinement. Then a finer grid
7}1(1) is created by locally refining each of the marked elements into four congruent triangles, and applying
bisection afterwards to avoid slave nodes. This is the standard red—green refinement commonly used ir
two-dimensional adaptive codes [3,17]. The solution and error estimator are computed aﬁﬁ/. on
This recursive process leads naturally to a sequence of improved spatial meshes

7;[(0) C 7;[(1) C--C Zl(d)'
Itis stopped whe{ E ., 1]| < TOLX ona certairﬂ;fd). Clearly, a goal is that the automatic mesh moving

technique should avoid excessive refinement. Moreover, if h-refinement is necessary, theshepitd
at least be small.
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t:=1p

rh-refinement

!

t:=to+7

t:=t+7 :l: t:=t+r7

- r-refinement
href := 0

error estimation 4—\

h-refinement
href := 1

—> coarsening

TOLX reached ?

TOLX/3 reached ?

step size control choose restricted 7

A

delete refinements

choose new 7 TOLT reached ?

A

t:=t—71

M

Fig. 3. Flow chart of the entire rh-adaptive algorithm.

If the time step cannot be accepted due to insufficient temporal accuracy, ise» TOLT in (3.4),
the time step is rejected, all refinements done in this step are deleted, and the computation is repeatec
with a reduced value of, given by formula (3.6). Otherwise, we proceed in time, continuing until the
final timezg is reached.

If |E, 11l < %TOLX or h-refinement took place during a time step, mesh coarsening is performed
after the time step has been accepted. This process helps to reduce degrees of freedom in region
where they are no longer needed. More precisely, an eleﬂherﬁ;fd) is removed only ifyr is below
%nbar for the triangle and the three corresponding triangular elements created by a local refinement
step (see [30] for more details). To control the global error, mesh movement, local refinement and
unrefinement are repeated until the prescribed spatial tolerance TOLX is completely satisfied. This
algorithm is summarized in a flow chart in Fig. 3.

We allow also for a complete remeshing whenever the mesh is severely distorted at a specific time.
The creation of a new base mesh is similar to the generation of a suitable initial mesh. We first create a
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quasi-uniform mesh and solve system (2.5) with a small scaling paramete® meshing Which causes a
sequence of small time steps due to a fast mesh movement. Then the error estimates are computed, ar
local mesh refinement is performed as described above. In contrast to the original rh-adaptive algorithm,
we coarsen the mesh after each time step in order to approximately equidistribute the error estimators.
If the integration results in excessive refinement, the computation is redone with a finer base mesh. The
paramete®meshingfor a remeshing at, has to be chosen in such a way that the auxiliary integration is
finished before the time, 1 =, + 7, determined by (3.6). We have found th@}eshing= 0.01- © is
generally quite sufficient.

Once a new base mesh has been constructed, the solution and the error estimator on it are determine
using linear interpolation, and the time integration proceeds. In order to provide data for the computation
of the projection erroi o in (4.3), we save the solution at the previous grid until it is no longer needed
because advancement to a subsequent time level has been successful.

6. Numerical examples
6.1. Burgers equation

Ouir first test is for the well-known scalar version of the two-dimensional Burgers’ equation
du=vVou —ud.u— udyu, in 2 x(0.25 1.5]

wheres? is the unit square. The initial and Dirichlet boundary conditions are chosen such that the exact
solution is

u(x,y, 1) =1/[1+ e =0/@],

We consider the case of a moderately small diffusion coeffigieat0.005.

With this example we shall mainly demonstrate the benefits of the combined rh-method described in
Section 5 over the pure h- and r-method by comparing the number of degree of freedoms required by the
three methods to attain a similar solution accuracy. Our results for the r-method are from [9], where a
linear finite element approximation on a 2048-triangular mesh and a constant time step-sife-3 are
employed. For such an r-adaptive approach,ith@orm of the solution error varies between 1E—4 and
1E-3 over the entire time interval. To reach a comparable solution accuracy, we choose the tolerances
TOLT = TOLX = 5E—4 for the h- and r-method (see Fig. 4). In addition, we set ATOLE-6 and
RTOL; = 1.0 in (3.5). Recall thatt and y are not utilized for spatial error control as described in
Section 4. The mesh movement is controlleddy= 10.0 in (2.3).

In Fig. 5, we plot the evolution of the number of grid points needed to reach the required accuracy.
Not surprisingly, the h-method needs significantly more nodes than the other methods. The rh-method
does a better job than the r-method, especially at the beginning and the end of the computation. There
the length of the moving solution front is shorter than in the middle of the time interval, as shown in
Fig. 7. The rh-method is able to adapt to increasing and decreasing nonuniformities through moving
the mesh towards an error distribution rather than devoting excessive effort to adding too many points.
A closer examination of the results for the time interf@P, 1.1] in Fig. 6 shows the main advantage
of the rh-method: First the r-method moves the nodes into regions of insufficient accuracy to ensure the
required tolerance is satisfied. Then, when this is no longer possible, the h-method helps by refining (or
coarsening) afterwards. In contrast, the pure h-method constantly refines and coarsens the mesh.
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Fig. 4. Burgers' equation: Temporal evolution of lodal-errors for linear finite elements. All computations give comparable
local error. The r-method in [9] is applied with a constant time step 0.001.
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Fig. 5. Burgers’ equation: Number of grid points (for linear finite elements) needed to reach the accuracies shown in Fig. 4.

We observe that the mesh adaption at the boundary is still not optimal. One possible explanation here
is that the one-dimensional MMPDE is not strictly the reduction of the two-dimensional one, which
might cause the excessive h-refinement near the boundary. The influence of the exact solution taken a:
boundary condition is also not fully clear. This phenomenon requires further investigations.

6.2. Flame problem

Our second example is a more practically relevant combustion problem modeling the propagation
of a laminar flame through a heat absorbing obstacle (see [31]). The equations for the dimensionless
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Fig. 6. Burgers’ equation: Temporal evolution of the number of grid points for linear finite elements in the time interval
[0.9, 1.1]. Whereas the rh-method keeps the number of grid points constant over a longer period, the h-method has to refine and
coarse constantly due to the moving solution.

temperaturd’” and the species concentratichread

1
0, T — VT = w, 9,C — —V?C = —w,
Le

wherew is determined by an Arrhenius law

B2 B(T-1)
w = ——CeT+aT-T)

2Le
We setLe =1, 8 = 10, anda = 0.8. The physical domai2 = [0, 60] x [0, 16] is covered by two
parallel cooled rods with rectangular cross section of ledgth 15 and widthH = 4 (see also Fig. 8).
The absorption of heat is modeled by the boundary cond#j@h= —« 7', where the heat loss parameter
k is set to 01. On the left boundary Dirichlet conditions corresponding to the burnt gtatel and
C =0 are prescribed. The remaining boundary conditions are of homogeneous Neumann type. The initial
solution is a right-travelling flame located left of the obstacle:

1 forx <9,

0 forx <9,
C(x,y,0) =
e forx >9, x..0) {

1— ele®@=%  forx > 0.

For the giverk, the flame speed slows down in the interior of the channel. The flame becomes curved,
but manages to pass through.

We choose the tolerances for the h- and rh-method as TOMOLT = 5E—4 and set ATOL.= 1E-6
and RTOL = 1.0 for all components in (3.5). Since the time scale of the underlying combustion
process demands fast mesh adaptation, weuse0.1 in (2.3). In both cases, linear finite elements
are used.

In Figs. 8 and 9, the moving meshes and the corresponding temperature level lines are depicted at
various times. The moving grids follow the dynamics of the problem. Grid points lying at the front as
well as at the back of the flame move towards the main combustion region. As before, the rh-method
needs fewer points than the h-method to ensure comparable resolution. A reduction in the number of

T(x,y,0) = {
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Fig. 7. Burgers’ equation: Selection of moving grids at different time points.

mesh points by up to a factor four can be observed from Fig. 10. The number of time steps chosen by the
integrator ROS2 are 429 and 499 for the h- and rh-method, respectively. Closer examination reveals that
in humerous instances the moving technique uses small time integration steps due to a sudden chang
in the local grid dynamics from coarsening—see Fig. 11 for cases where the time integrator is forced to
reduce the time step.
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Fig. 8. Propagating Flame: Selection of moving grids at various times. Top to baotterd27, 5.43, 19.1, 35.4, 50.0.
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Fig. 10. Propagating Flame: Number of grid points chosen for the h- and rh-method.
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Fig. 11. Propagating Flame: History of time steps chosen by Ros2 for the h- and rh-method.

7. Conclusion

We have presented a finite element method based on a combined rh-mesh refinement strategy. Majo
purposes are (i) to incorporate an r-refinement strategy into an h-refinement finite element code [31]
to provide more efficiency by having better mesh alignment and (ii) to enhance an effective r-method
(as used, e.g., in [11]) with global error control using h-refinement. The finite element method is based
upon the horizontal method of lines. For it, the physical PDEs are integrated in time with a Rosenbrock—
Wanner-type method. Hierarchical error estimates are used to guide both the mesh movement and loca
refinement. The general r-refinement method, originally developed in [26,27], is based on solving a set
of MMPDEs.

The implementation of r-refinement here is fairly straightforward and has not been extensively tested
to see that parameters are optimized for this well-tested h-refinement code. In addition, there has not
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as yet been a rigorous theoretical analysis of the method. Nevertheless, the overall feasibility of the
general rh-refinement approach in this context is apparent. The numerical results are quite promising,
demonstrating that a combined mesh refinement method can significantly reduce the number of degree
of freedoms needed to reach a prescribed error tolerance. We anticipate that a considerably more efficien
implementation of this method can be developed which will be ideal for solving a large class of time
dependent problems with multiple-scales. The task of finding the most efficient rh-refinement method
for time-dependent PDEs can be daunting given the number of interconnected parameters and possible
strategies for computing the solution and grid as the solution evolves. For example, r-movement can be
done for only a relatively coarse mesh. Another approach worth investigating is to modify the form of the
MMPDE as recently introduced in [24,25]. Appropriately choosing the monitor function, the error during
the r-refinement steps can be better coordinated with the error form for the finite element method with
h-refinement. For steady state solutions, this could provide a mesh optimization analogous in principle
to that in [14,21]. Finally, it is natural and straightforward to apply such an rh-method to problems with
moving boundaries. These are all issues which will be investigated in the future.
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