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Chapter 1

Primaries

1.1 Introduction

Many partial differential equations (PDEs) arising from science and engineering have a common
feature that they have a small portion of the physical domain where small node separations are
required to resolve large solution variations. Examples include problems having boundary layers,
shock waves, ignition fronts, and/or sharp interfaces in fluid dynamics, the combustion and heat
transfer theory, and groundwater hydrodynamics. Numerical solution of these PDEs using a uni-
form mesh may be formidable when the systems involve more than two spatial dimensions since the
number of mesh nodes required can become very large. On the other hand, to improve efficiency
and accuracy of numerical solution it is natural to put more mesh nodes in the region of large
solution variation than the rest of the physical domain. With this basic idea of mesh adaptation,
the number of mesh nodes required can be much smaller; thus significant economies can be gained.

Mesh adaptation lies in the ability to control the size, shape, and orientation of mesh elements
throughout the domain. Traditionally, research has been concentrated mainly on isotropic mesh
adaptation where where mesh elements are adjusted only in size according to an error estimate
or indicator while their shape is kept to be or close to being equilateral; e.g., see books [51, 27,
113, 2] and references therein. Unfortunately, adaptive isotropic meshes often tend to use too
many elements in the region of large solution error. This is especially true when problems have an
anisotropic feature that the solution changes more significantly in one direction than the others.
Full benefits of mesh adaptation can be taken by adjusting not only the size but also the shape and
orientation of mesh elements according to the behavior of the physical solution. Often this results
in an anisotropic mesh, a mesh having elements with large aspect ratio.

Mathematical studies of anisotropic meshes can be traced back to Synge [108], Zlámal [129],
Babus̆ka and Aziz [8], Jamet [70], and Barnhill and Gregory [12]. In the last decade, research
has been intensified and progress has been made in developing strictly mathematically-based error
estimates; e.g., see [3, 4, 5, 6, 7, 34, 33, 37, 38, 43, 49, 53, 61, 62, 76, 78, 97, 100, 103, 104, 105].
Particularly, D’Azevedo and Simpson [37, 38] introduce the concept of optimal triangles and derive
estimates of linear interpolation error and its gradient for quadratic functions, and their results
have motivated the formulation of the so-called metric tensor used in a number of anisotropic mesh
generation codes.

On the practical side, a number of strategies and computer codes have been developed for
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anisotropic mesh generation, see the mesh generation website maintained by Robert Schneiders
[101] and the meshing software survey conducted by Steve Owen [94]. They mainly fall into two
categories, h-version and r-version. h-version methods typically employ local tools such as edge sup-
pression, vertex suppression, vertex addition, edge swapping, and vertex reallocation (barycentering
step) and generate unstructured anisotropic meshes as isotropic ones in the metric determined by
a tensor specifying the size, shape and orientation of mesh elements on the whole physical domain.
Various strategies have been used, including the Delaunay triangulation method [16, 17, 31, 95],
the advancing front method [50], the bubble mesh method [122], the quadtree-based method [91],
and the method combining local modification with smoothing or node movement [3, 18, 43, 53].

On the other hand, r-version methods generate adaptive meshes by dynamically reallocating
node positions. Typically they employ a system of elliptic- or parabolic-type PDEs to produce
a structured mesh [114] although they can also be used to generate an unstructured one [24]. A
type of r-version method is variational methods. They formulate mesh generation PDEs through a
functional and often incorporate the well-known equidistribution principle and mesh properties such
as smoothness and orthogonality into the formulation. Examples of variational methods include
those developed in [20, 45, 59, 73, 121]. (Also see the books [27, 72, 85, 114] and references therein).
For time dependent problems, r-version methods are often referred to as adaptive moving mesh
methods or moving mesh methods for short, where nodes are typically moved around to adapt to
the moving feature of the physical solution. Moving mesh methods can be developed based on a
(static) variational mesh generator, for example see [44, 64, 65, 67, 13, 82, 83]. Other types of
moving mesh method include the moving finite element method (MFE) [90, 89] (also see the books
by Baines [9] and Zegeling [124]) and the GCL method [25].

This series of lectures is devoted to the study of anisotropic meshes in both theory and algorithm.
Focus is on basic principles of mesh adaptation, interpolation theory, anisotropic error estimates,
monitor functions, variational mesh generation, and moving mesh methods. The moving finite
element method or the MFE of Miller will not be discussed here. The interested reader is referred
to the book by Baines [9].

1.2 Sobolev spaces

Throughout this lecture series, Ω is used to denote a simply connected, open, bounded domain
in the n-dimensional space, <n (n > 0). Ω is the closure of Ω, and |Ω| denotes its volume (or
n-dimensional measure). Given a multi-index α = (α1, α2, ..., αn) of non-negative integers, let
|α| = α1 + · · ·+ αn and

Dαu =
∂|α|u

∂xα1
1 ...xαn

n
.

Sometimes an l-th order partial derivative is also denoted by

D(i1,...,il)u =
∂lu

∂xi1 · · · ∂xil

,

where (i1, ..., il) is an integer vector of l components with 1 ≤ i1, ..., il ≤ n. Dlu or D|α|u (l = |α|)
is used to denote the set of all l-th order derivatives.
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Lebesgue space Lp(Ω) (1 ≤ p <∞) is defined as the vector space of the functions u : Ω→ < for
which |u|p is Lebesgue integrable on Ω and

∫
Ω |u(x)|

pdx <∞. It is a Banach space for the norm

‖u‖Lp(Ω) =
(∫

Ω
|u(x)|pdx

) 1
p

.

L∞(Ω) is the Banach space of the measurable functions which are defined on Ω and bounded outside
a set of measure zero. It is equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)|.

The Lebesgue spaces have the imbedding property: L1(Ω) ←↩ L2(Ω) ←↩ · · · ←↩ L∞(Ω). This is an
immediate result of the following theorem. The interested reader is referred to Hardy et al. [55] for
the proof. The theorem will be used frequently throughout this lecture series, particularly related
to the equidistribution principle (2.4).

Theorem 1.2.1 Given a weight function w(x) with
∫
Ωwdx = 1, define

Mr(f) =
(∫

Ω
w|f |rdx

) 1
r

for arbitrary function f and real number r, with the limits that M0(f) = exp(
∫
Ωw log |f |dx) (geo-

metric mean), M+∞ = max |f |, and M−∞ = min |f |. Then

Mr(f) < Ms(f) (1.1)

for −∞ ≤ r < s ≤ +∞ unless (a) Mr(f) = Ms(f) = +∞ which can happen only if r ≥ 0 or (b)
Mr(f) = Ms(f) = 0 that can happen only if s ≤ 0 or (c) f = constant.

Sobolev spaces deal with function derivatives. For a multi-index α = (α1, ..., αn) and for a
Lebesgue integrable function u on Ω, if there is a function vα Lebesgue integrable on Ω and satisfying
the condition ∫

Ω
uDαψdx = (−1)|α|

∫
Ω
vαψdx ∀ψ ∈ D(Ω),

then vα is said to be a distributional derivative or a generalized derivative of order |α| of u. It is
denoted by vα = Dαu.

For a given integer m ≥ 0 and a given real number p ∈ [1,∞], Sobolev space Wm,p(Ω) is
defined as the vector space of the functions u ∈ Lp(Ω) such that for each multi-index α with
|α| ≤ m, distributional derivative Dαu belongs to Lp(Ω). It is a Banach space for the norm

‖u‖W m,p(Ω) =

 ∑
|α|≤m

∫
Ω
|Dαu|pdx

 1
p

.

The semi-norm is denoted by

|u|W m,p(Ω) =

 ∑
|α|=m

∫
Ω
|Dαu|pdx

 1
p

=
(∫

Ω
‖Dmu‖plpdx

) 1
p

,
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where ‖ · ‖lp denotes the lp matrix norm. The scaled semi-norm will also be used,

〈u〉W m,p(Ω) =

 1
|Ω|

∑
|α|=m

∫
Ω
|Dαu|pdx

 1
p

=
(

1
|Ω|

∫
Ω
‖Dmu‖plpdx

) 1
p

. (1.2)

It is noted that
Lp(Ω) = W 0,p(Ω), Hm(Ω) = Wm,2(Ω).

The reader is referred to Adams [1] for the Sobolev imbedding theorem which shows the imbedding
characteristics of Sobolev spaces.

1.3 Mesh terminology

Consider a polyhedral domain Ω in <n. Assume that a family of triangulations or meshes {Th}
is given on Ω, with h > 0 being the parameter characterizing the family. Let K be the generic
element in Th. By convention, K is a close sub-domain of Ω. Also, Ω ⊂

⋃
K∈Th

K, and the interiors
of any two different elements should not be overlapped. Denote by N the number of elements of
Th.

A uniform mesh of Ω is a triangulation whose elements are equilateral and of the same size.
Thus, for a uniform mesh,

hK ≡ diameter(K) ≈
(
|Ω|
N

) 1
n

= O(N− 1
n ) ∀K ∈ Th. (1.3)

For a family of uniform meshes, the parameter h can be defined as h = maxK∈Th
hK . Thus,

h→ 0 ⇐⇒ N →∞. (1.4)

A generalization of uniform meshes is a regular family of triangulations which satisfies the
conditions:

(i) There exists a constant σ such that

hK

ρK
≤ σ, ∀K ∈

⋃
h

Th,

where hK = diam(K) and ρK = sup{ diam(B) : B is a ball contained in K} are the diame-
ter and in-diameter, respectively, of K.

(ii)
h = max

K∈Th

hK → 0.

Note that both (1.3) holds for a regular family of triangulations. A quasi-uniform mesh is
referred to a mesh for which (i) is satisfied and the variation of its element size is bounded by a
constant. Thus, both (1.3) and (1.4) are true for a quasi-uniform mesh.

Throughout this series lectures, we make the following assumption

H1. {Th} is an affine family of triangulations for Ω. (1.5)
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A family of triangulations is called an affine family of triangulations if there exits an element K̂
such that any element K in the family of triangulations can be mapped from K̂ through an affine
mapping. In other words, for each element K of Th ∈ {Th}, there exists an invertible affine mapping
FK : K̂ → K such that K = FK(K̂). The element K̂ is called the reference or master element for
the family of triangulations. Without loss of generality, we assume

H2. The reference element has been chosen to be equilateral with unitary size |K̂| = 1. (1.6)

From time to time, a mesh is considered to be the image of a computational mesh under an
invertible coordinate transformation x = x(ξ) : Ωc → Ω. Domain Ωc is called the computational
domain which is artificially chosen for the purpose of mesh generation. Typically, the computational
mesh is chosen to be uniform or quasi-uniform. Since generating the mesh is mathematically
equivalent to determining the coordinate transformation, a coordinate transformation is viewed
equivalently as a mesh.

The inverse coordinate transformation of x = x(ξ) is denoted by ξ = ξ(x). The Jacobian matrix
and its determinant (i.e. the Jacobian) are denoted by

J =
∂x

∂ξ
, J = det(J).

1.4 Two algebraic inequalities

The following two inequalities will be used frequently. The first is a generalization of the well-known
arithmetic-mean geometric-mean inequality and the second is Jensen’s inequality.

Theorem 1.4.1 (Generalized arithmetic-mean geometric-mean inequality.) Let w1, ..., wm

be m weights satisfying wi > 0 and
∑

iwi = 1. Then, for any positive numbers a1, ..., am,(
m∑

i=1

wia
s
i

) 1
s

≤

(
m∑

i=1

wia
t
i

) 1
t

for any numbers −∞ ≤ s < t ≤ ∞, with equality iff (if and only if) a1 = · · · = an. Here, the
following convention has been used,

(
m∑

i=1

wia
s
i

) 1
s

=



m∏
i=1

awi
i for s = 0,

max
1≤i≤m

ai for s =∞,

min
1≤i≤m

ai for s = −∞.

Note that the above theorem reduces to the well known arithmetic-mean geometric-mean in-
equality when s = 0, t = 1, and w1 = · · · = wm = 1

m .

Theorem 1.4.2 (Jensen’s inequality.) For any m positive numbers a1, ..., am, the inequality(
m∑

i=1

as
i

) 1
s

≥

(
m∑

i=1

at
i

) 1
t

holds for any numbers s and t with 0 < s ≤ t.
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Chapter 2

Basic principles in mesh adaptation

2.1 Introduction

Essential to mesh adaptation is the ability to control the size, shape, and orientation of mesh
elements. This is often done in two steps. In the first steps, the element information on size, shape,
and orientation is specified throughout the domain. The specification is often based on an error
indicator, an error estimate, or a physical consideration. It typically utilizes a scalar function for
isotropic mesh generation and a matrix-valued field for the anisotropic situation. In the second step,
an algorithm is developed for generating the needed adaptive mesh according to the specification
of element information.

In this chapter we study basic mathematical principles behind the specification of element
information. Development of algorithms will be discussed later in Chapters 7, 8, 9, and 10.

2.2 Geometric meaning of SVD decomposition

A continuous view for mesh adaptation is to consider an adaptive mesh to be generated as the
image of a computational mesh under a reversible coordinate transformation x = x(ξ) : Ωc → Ω,
where Ωc is the computational domain. Assuming that a uniform computational mesh is chosen,
the size, shape, and orientation of mesh elements are then completely determined by x = x(ξ).
Consequently, the control of elements is equivalent to the control of x = x(ξ). Unfortunately, it is
not an easy task, if not impossible, to explicitly define a coordinate transformation having desired
mesh concentration. For this reason, a closer look is needed for what determines the element size,
shape, and orientation.

In the continuous viewpoint, mesh elements are represented by ellipsoids. The size, shape, and
orientation of an element is clear: the size is its volume, the shape is determined by the relative
lengths or ratios between the lengths of its semi-axes, and the orientation is specified by its principal
axis vectors. Fig. 2.1 shows an ellipse in two dimensions. The size is its area πab, the shape is
determined by the ratio a/b or b/a, and the orintation is specified by the vectors v1 and v2.

Let e be an arbitrary element and let ec be the corresponding computational element. They
are related by e = x(ec) under coordinate transformation x = x(ξ). ec is a ball since the computa-
tional mesh is assumed to be uniform. Being linearized about the center of ec, ξ0, the coordinate

7



8 CHAPTER 2. BASIC PRINCIPLES IN MESH ADAPTATION

€ 

a

€ 

b

€ 

v1
€ 

v2

Figure 2.1: An ellipse – a mesh element in the continuous form in two dimensions.

transformation can be expressed as

x = x0 + J(ξ − ξ0) +O(|ξ − ξ0|2),

where x0 is the center of e and J is the Jacobian matrix of x = x(ξ) calculated at ξ0. To see how
ec is mapped into e, we consider the singular value decomposition (SVD) of J ,

J = UΣV T ,

where U and V are the orthogonal matrices associated with left and right singular vectors, respec-
tive, and Σ is the diagonal matrix consisting of the singular values. The geometric meaning of the
SVD is illustrated in Fig. 2.2. Specifically, the computational element ec is rotated by V , then
mapped and compressed/expanded in the coordinate directions into a physical element by Σ, and
finally rotated again by U and becomes e. Thus, U determines the orientation and Σ specifies
the size and shape of physical element e, while V rotates the computational element and has no
influence on the size, shape, and orientation of the physical element e.

€ 

ξ - space€ 

v1

€ 

v2

€ 

VT

€ 

ξ - space

€ 

v1
€ 

v2

€ 

∑

€ 

x - space

€ 

U

€ 

x - space€ 

u1

€ 

u2

€ 

(ec)

€ 

(e)
€ 

J =U∑VT

Figure 2.2: Geometric meaning of the singular value decomposition of J . Here, v1, ..., vn and
u1, ..., un are the column vectors of V and U , respectively.

2.3 Alignment and equidistribution

The analysis in the previous section has shown that the size, shape, and orientation of mesh elements
are determined by the left singular vectors U and the singular values Σ of the Jacobian matrix J .
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Thus, their control can be achieved by specifying JJT = UΣ2UT or its inverse J−T J−1 = UΣ−2UT .
Let

J−T J−1 =
(

σ

|Ωc|

)− 2
n

M(x), (2.1)

where M(x) an n× n symmetric positive definite matrix and σ is a constant defined as

σ =
∫

Ω
ρ(x)dx, ρ(x) =

√
det(M(x)). (2.2)

Hence, through (2.1) M(x) specifies the size, shape, and orientation of mesh elements on the
whole domain. For this reason, M(x) is referred to as the monitor function. The function ρ(x) =√

det(M(x)) is called the adaptation fucntion. The monitor function can be defined based on
interpolation error estimates; see Chapter 6.

The following theorem gives a different perspective to the condition (2.1).

Theorem 2.3.1 Given a monitor function M on Ω, the condition (2.1) is equivalent to the
following two conditions:

(i) The alignment condition:

tr
(
J−1M−1J−T

)
= n det

(
J−1M−1J−T

) 1
n . (2.3)

(ii) The equidistribution condition:

Jρ =
σ

|Ωc|
, (2.4)

where J = det(J), ρ =
√

det(M), and σ is defined in (2.2).

The proof of the theorem is given later this section. It is remarked that the conditions (2.3)
and (2.4) have been derived and used in [59] for developed a variational mesh adaptation method.

The equidistribution condition (2.4) is a multi-dimensional generalization of the well-known
equdistribution principle [22, 39]. It is the most fundamental principle in mesh adaptation. Indeed,
there are very few adaptive mesh algorithms that do not use its basic idea: evenly distribute an
error function among all the mesh cells. In the current situation, ρ(x) severs as the error function.

The following theorem shows that through alignment condition (2.3), the shape and orientation
of mesh elements are determined, respectively, by the relative magnitude of the eigenvalues and the
eigenvectors of M .

Theorem 2.3.2 Given a monitor function M on Ω, the alignment condition (2.3) holds if and
only if

J−T J−1 = θ(x)M(x) ∀x ∈ Ω (2.5)

holds for some scalar function θ = θ(x).
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Proof. Let the eigenvalues of matrix J−1M−1J−T be λ1, ..., λn. Then, (2.3) is equivalent to

∑
i

λi = n

(∏
i

λi

) 1
n

.

From the arithmetic-mean geometric-mean inequality (cf. Theorem 1.4.1), the above equation is
equivalent to the conditions

λ1 = · · · = λn.

This is in turn equivalent to
J−1M−1J−T = θ(x)I, (2.6)

where I is the identity matrix and θ(x) := λ1 = · · · = λn.

Proof of Theorem 2.3.1. Notice that (2.1) can be rewritten as

J−1M−1J−T = σ−
2
n I. (2.7)

Then the conclusion of the theorem follows from the observation that condition (2.7) is equivalent
to the requirement (2.6), with θ being constant as implied by the equidistribution condition (2.4).

It is interesting to know if there exists a coordinate transformation exactly satisfying (2.1).
Generally speaking, n conditions are needed to determine a coordinate transformation x = x(ξ).
It is not difficult to see that (2.1) gives n(n+ 1)/2 conditions. Since n(n+ 1)/2 > n when n > 1,
(2.1) gives an over-determined system, meaning that in general there does not exist a coordinate
transformation exactly satisfying (2.1).

Nevertheless, conditions (2.3) and (2.4), or equivalently condition (2.1), still play a fundamental
role in mesh adaptation since they tell how mesh elements can be controlled via the monitor func-
tion M = M(x). For convenience, hereafter a mesh satisfying the alignment and equidistribution
conditions exactly will be referred to as the mesh specified by M . Obviously, in practice a mesh
should be generated in such that it is as close as possible to the mesh specified by M .

A natural way to deal with the over-determined system is to use the least squares method. For
example, one can define the (inverse) coordinate transformation ξ = ξ(x) as a minimizer of the
functional

I[ξ] =
∫

Ω
‖J−T J−1 − σ−

2
nM(x)‖2Fdx,

where ‖ ·‖F is the Frobenius matrix norm. Unfortunately, it leads to an undesired degenerate mesh
equation. To see this more clearly, we take the 1D case as an example. In 1D, the above functional
becomes

I[ξ] =
∫ b

a

(
ξ2x − σ−2M(x)

)2
dx.

Its Euler-Lagrange equation is

∂

∂x

[(
ξ2x − σ−2M(x)

)
ξx
]

= 0,
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which becomes degenerate when ξ2x = σ−2M(x), the 1D form of (2.1). Thus, the least squares
method does not work for the current situation.

Fortunately, the difficulty can be overcome by using (2.3) and (2.4) instead of (2.1). A method
was proposed in [59], which is to be described in Chapter 8.

2.4 Alignment and equidistribution for finite element meshes

The analysis in the previous section has been given for a coordinate transformation. But it can
be easily adopted for an affine family of triangulations. Indeed, one may have noticed that the
discussion in the previous sections are mostly local, indicating that x = x(ξ) can be replaced
with x = FK(ξ) when x ∈ K. The size, shape, and orientation of element K is determined by
(F

′
K)−T (F

′
K)−1. Let

(F
′
K)−T (F

′
K)−1 =

(σh

N

)− 2
n
M(K), (2.8)

where F
′
K is the Jacobian matrix of FK , M(K) is a certain average of the monitor function on K,

N is the number of elements in Th, and σh is a constant defined as

σh =
∑

K∈Th

|K|ρ(K), ρ(K) =
√

det(M(K)). (2.9)

Similarly, the condition (2.8) can be decomposed into the following alignment and equidistri-
bution conditions

tr
(
(F

′
K)−1M−1(F

′
K)−T

)
= n det

(
(F

′
K)−1M−1(F

′
K)−T

) 1
n
, (2.10)

|K|ρ =
σh

N
, (2.11)

where we have used |det(F
′
K)| = |K|. Moreover, the condition (2.10) alone is equivalent to

(F
′
K)−T (F

′
K)−1 = θ(K)M(K) (2.12)

for some scalar function θ = θ(K).
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Chapter 3

Interpolation theory in Sobolev spaces

3.1 Introduction

A classic error estimate in the interpolation theory in Sobolev spaces is presented in this chapter.
The bound is very general and holds for any simplicial element in n-dimensional space. The result
forms the base for other developments in later chapters, such as anisotropic error estimation, the
definition of the monition function, and h- and r-version anisotropic mesh adaptation.

3.2 Finite element terminology

A finite elenent is defied as a triple (K,PK ,ΣK), where K is a mesh element, PK is a finite-
dimensional linear space of functions defined on K, and ΣK is a set of degrees of freedom which
consists of the parameters uniquely determining a function in PK .

Two finite elements are said to be affine-equivalent if their mesh elements, finite dimensional
function spaces, and sets of degrees of freedom can be mapped to each other through affine map-
pings.

An affine family of finite elements is defined as a family of finite elements for which all its finite
elements are affine-equivalent to a single finite element.

Example 3.2.1. A linear finite element in two dimensions is (K,PK ,ΣK) where K is a trian-
gular element with vertices ai, i = 1, 2, 3; PK consists of all linear functions defined on K, i.e.,

PK = {p | p = ax+ by + c, ∀a, b, c ∈ <};

and ΣK is defined as ΣK = {p(ai), i = 1, 2, 3}, i.e., each function in PK is uniquely determined by
its values at the vertices of K.

3.3 Element-wise estimate on interpolation error

The following theorem is a result in the interpolation theory in Sobolev spaces. The reader is
referred to [35] for its proof.

13
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Theorem 3.3.1 Let (K̂, P̂ , Σ̂) be a finite element, where K̂ is the reference element, P̂ is a
finite-dimensional linear space of functions defined on K̂, and Σ̂ is a set of degrees of freedom.
Let s be the greatest order of partial derivatives occurring in Σ̂. For some integers m, k, and l:
0 ≤ m ≤ l ≤ k + 1, and some numbers p, q ∈ [1,∞], if

W l,p(K̂) ↪→ Cs(K̂), (3.1)

W l,p(K̂) ↪→Wm,q(K̂), (3.2)

Pk(K̂) ⊂ P̂ ⊂Wm,q(K̂), (3.3)

where Pk(K̂) is the space of polynomials of degree no more than k, then there exists a constant
C = C(K̂, P̂ , Σ̂) such that, for all affine-equivalent finite elements (K,PK ,ΣK),

|v −Πk,Kv|W m,q(K) ≤ C‖(F
′
K)−1‖m · |det(F ′

K)|
1
q · |v̂|W l,p(K̂) ∀v ∈W l,p(K), (3.4)

where Πk,K : W l,p(K) → PK denotes the PK-interpolation operator on K, v̂ = v ◦ FK is the
composite function defined on K̂, and ‖ · ‖ denotes the l2 matrix norm.

The theorem contains six parameters m, k, l, p, and q. They are summarized in Table 3.1.

Table 3.1: The parameters contained in Theorem 3.3.1
Parameter Range Physical meaning

k Integer, k ≥ 0 Degree of interpolating polynomial, Pk ⊂ PK .
l Integer, 0 ≤ l ≤ k + 1 Regularity of interpolated functions, v ∈W l,p(K).
m Integer, 0 ≤ m ≤ l Order of derivatives of error measured, e ∈Wm,q(K).
p Real, 1 ≤ p ≤ ∞ Regularity of interpolated functions, v ∈W l,p(K).
q Real, 1 ≤ q ≤ ∞ Used in the norm of the error, e ∈Wm,q(K).

One may notice that the error bound in (3.4) is given in derivatives on K̂. This is crucial to
the study of anisotropic meshes since it allows to develop error bounds coupling mesh properties
with solution derivatives on K. Also, (3.4) is not optimal when m ≥ 1, but it greatly simplifies the
discussion since there is no need to introduce conditions like the maximum angle condition.

It is instructive to spell out the conditions (3.1) – (3.3). By the Sobolev imbedding theorem [1],
we have {

l > n
p + s for p > 1

l ≥ n+ s for p = 1
=⇒ W l,p(K̂) ↪→ Cs(K̂)


l ≥ m for p ≥ q
l < n

p +m for 1
q = 1

p −
l−m

n

l = n
p +m for 1 ≤ q <∞

=⇒ W l,p(K̂) ↪→Wm,q(K̂),

(3.5)

where n is the dimenion of K̂. Regarding (3.3), it is noted that P̂ is often chosen as Pk(K̂). If this
is the case, condition (3.3) places no constraints on the parameters m, k, l, p, and q.
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Example 3.3.1. Consider the widely used Lagrange interpolation (s = 0) with p = q = 2.
Condition (3.5) becomes 0 ≤ m ≤ l ≤ k + 1 and l > n/2. Thus, (3.4) holds for functions in
H1(K̂) ≡W 1,2(K̂) in one dimension and H2(K̂) ≡W 2,2(K̂) in two and three dimensions.

Hereafter, we assume that

H3. Parameters m, k, l, p, and q have been chosen such that the result of Theorem 3.3.1 holds.
(3.6)
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Chapter 4

Isotropic error estimates

4.1 Introduction

The goal is to derive concrete element-wise bounds on interpolation error using Theorem 3.3.1 of
Chapter 3. The key is to estimate |v̂|W l,p(K̂) in (3.4) using the physical derivatives of v on the
element K. This can be done in either the isotropic approach or the anisotropic approach. In the
isotropic approach, the shape of elements is separated from the physical derivatives of v. On the
contrary, the shape and orientation of elements are coupled with the physical derivatives of v in the
anisotropic approach. Error estimates obtained using these approaches are referred to as isotropic
and anisotropic error estimates, respectively.

Generally speaking, isotropic meshes are associated with isotropic error estimates while anisotropic
meshes are associated with anisotropic error estimates; see Chapters 7 and 8. Isotropic error es-
timation has the advantage of simplicity whereas anisotropic error estimation takes the maximal
benefit of mesh adaptation by allowing elements to adjust their shape and orientation to fit the ge-
ometry of the physical solution. Examples of isotropic meshes include uniform and regular meshes,
and an example of anisotropic meshes is the well-known Shishkin-type mesh.

Traditionally error estimates have been derived under the assumption that the mesh is regular,
quasi-uniform, or uniform; e.g., see [35]. Thus, traditional results are isotropic.

This chapter is devoted to isotropic error estimation, and anisotropic error estimation will be
discussed in the next chapter.

4.2 Chain rule

The basic tools in the estimation are the coordinate transformation and the chain rule. To explain
this, denote the physical (on K) and computational (on K̂) coordinates by x = (x1, ..., xn)T and
ξ = (ξ1, ..., ξn)T , respectively. In these coordinate systems, the affine mapping FK : K̂ → K can be
expressed as

x = x(ξ) := FK(ξ), ∀ξ ∈ K̂. (4.1)

The Jacobian matrix

F
′
K =

∂x

∂ξ
=
∂(x1, ..., xn)
∂(ξ1, ..., ξn)

17
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is constant on K and piecewise constant on the whole domain Ω. Affine mapping FK can also be
written in terms of F

′
K as

x = F
′
Kξ + c, ∀ξ ∈ K̂ (4.2)

for some vector c.
Through the affine mapping, the length scales of K along the coordinate directions can be

expressed as

hi,K =

∑
j

∣∣∣∣∂xi

∂ξj

∣∣∣∣2
 1

2

, i = 1, ..., n, (4.3)

where the sum is over the range j = 1 to n. Let

D(i1,...,il)v =
∂lv

∂xi1 · · · ∂xil

, D̂(i1,...,il)v =
∂lv

∂ξi1 · · · ∂ξil
.

By changing integration variables it follows

|v̂|p
W l,p(K̂)

≡
∫

K̂

∑
i1,...,il

∣∣∣D̂(i1,...,il)v
∣∣∣p dξ

=
∣∣∣det(F

′
K)
∣∣∣−1
∫

K

∑
i1,...,il

∣∣∣D̂(i1,...,il)v
∣∣∣p dx.

By the chain-rule, we get, for a given integer t, 0 ≤ t ≤ l,∑
i1,...,il

|D̂(i1,...,il)v̂|p

=
∑

i2,...,il

∑
i1

∣∣∣∣∑
j1

∂xj1

∂ξi1
D̂(i2,...,il)D(j1)v

∣∣∣∣p
≤ C

∑
j1

hp
j1,K

∑
i2,...,il

|D̂(i2,...,il)D(j1)v|p

≤ · · · (repeat it t times)

≤ C
∑

j1,...,jl−t

hp
j1,K · · ·h

p
jl−t,K

∑
il−t+1,...,il

|D̂(il−t+1,...,il)D(j1,...,jl−t)v|p,

where the equivalence of vector norms (particularly between l2 and lp norms) has been used and C
denotes the generic constant which may take different values at different occurrences. Thus,

|v̂|p
W l,p(K̂)

≤ C
∣∣∣det(F

′
K)
∣∣∣−1

×
∑

j1,...,jl−t

hp
j1,K · · ·h

p
jl−t,K

∑
il−t+1,...,il

∫
K
|D̂(il−t+1,...,il)D(j1,...,jl−t)v|pdx. (4.4)

This result will be used for both isotropic and anisotropic error estimation.
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4.3 Isotropic error estimation on a general mesh

Taking t = 0 in (4.4), one gets

|v̂|p
W l,p(K̂)

≤ C
∣∣∣det(F

′
K)
∣∣∣−1 ∑

j1,...,jl

hp
j1,K · · ·h

p
jl,K

∫
K
|D(j1,...,jl)v|pdx

≤ C
∣∣∣det(F

′
K)
∣∣∣−1
‖F ′

K‖pl
∑

j1,...,jl

∫
K
|D(j1,...,jl)v|pdx

= C
∣∣∣det(F

′
K)
∣∣∣−1
‖F ′

K‖pl · |v|p
W l,p(K)

.

Inserting this into the bound (3.4) yields

|v −Πk,Kv|W m,q(K) ≤ C‖(F
′
K)−1‖m · ‖F ′

K‖l · |det(F
′
K)|

1
q
− 1

p · |v|W l,p(K), ∀v ∈W l,p(K). (4.5)

One may notice that the physical derivative term, |v|W l,p(K), is not directly coupled with the
Jacobian matrix, F

′
K . This feature makes the shape and orientation of element K independent

from the solution behavior. For this reason, the bound (4.5) is referred to as an isotropic error
bound.

4.4 Error bound on regular triangulations

It is instructive to see what the bound (4.5) looks like on regular triangulations, particularly uniform
meshes. To this end, we first estimate the norm and determinant of F

′
K in the following lemma.

Lemma 4.4.1 The Jacobian matrix, F
′
K , of the affine mapping FK between two simplicial

elements K̂ and K has the properties

‖F ′
K‖ ≤

hK

ρK̂

, ‖(F ′
K)−1‖ ≤

hK̂

ρK
, |det(F

′
K)| = |K|

|K̂|
, (4.6)

where hK and ρK are the diameter and in-diameter of K, respectively, and hK̂ and ρK̂ are the
corresponding quantities for K̂.

Proof. Let S(ξc, r) be the sphere of the biggest inscribed ball of K̂ centered at ξc and with
radius r. Obviously, the diameter of S(ξc, r) is ρK̂ and thus ρK̂ = 2r. For any point ξ on S(ξc, r),
denote by ξ̃ the conjugate point which is defined as the intersection of the sphere and the straight
line passing through ξc and ξ. By definition, ‖ξ − ξ̃‖ = ρK̂ . It follows

‖F ′
K‖ = sup

ξ 6=0

‖F ′
Kξ‖
‖ξ‖

= sup
ξ∈S(ξc,r)

‖F ′
K(ξ − ξ̃)‖
‖ξ − ξ̃‖

=
1
ρK̂

sup
ξ∈S(ξc,r)

‖F ′
Kξ − F

′
K ξ̃‖. (4.7)
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Since both F
′
Kξ and F

′
K ξ̃ are on K, ‖F ′

Kξ − F
′
K ξ̃‖ ≤ hK . Inserting this into (4.7) gives the first

inequality in (4.6).
The second inequality can be obtained by interchanging the roles of K̂ and K.
The third inequality in (4.6) comes from the change of variables in integration,

|K| =
∫

K
dx =

∫
K̂
|det(F

′
K)|dξ = |det(F

′
K)|

∫
K̂
dξ = |det(F

′
K)| · |K̂|.

Using this lemma and the assumption |K̂| = 1 (cf. the hypothesis H2 (1.6)), it follows from
(4.5) that for any element K in a regular, affine triangulation,

|v −Πk,Kv|W m,q(K) ≤ Ch
l−m+n

q
−n

p

K · |v|W l,p(K), ∀v ∈W l,p(K) (4.8)

where |K| = O(hn
K) has been used.

If it is further assumed that Th is uniform, then h = hK for all K ∈ Th and

|v −Πk,Kv|W m,q(Ω) :=

∑
K∈Th

|v −Πk,Kv|qW m,q(Ω)

 1
q

≤ Ch
l−m+n

q
−n

p

∑
K∈Th

|v|q
W l,p(K)

 1
q

From the arithmetic-mean and geometric-mean inequality (cf. Theorem 1.4.1), for p ≥ q one gets∑
K∈Th

|v|q
W l,p(K)

 1
q

≤ N
1
q
− 1

p

∑
K∈Th

|v|p
W l,p(K)

 1
p

≤ Ch
n
p
−n

q

∑
K∈Th

|v|p
W l,p(K)

 1
p

.

On the other hand, when p ≤ q, Jensen’s inequality (cf. Theorem 1.4.2) leads to∑
K∈Th

|v|q
W l,p(K)

 1
q

≤

∑
K∈Th

|v|p
W l,p(K)

 1
p

.

Combining these results, it arrives

|v −Πk,Kv|W m,q(Ω) ≤ Ch
l−m−max{0, n

p
−n

q
}|v|W l,p(Ω), ∀v ∈W l,p(Ω). (4.9)

Particularly, when p ≥ q,

|v −Πk,Kv|W m,q(Ω) ≤ Chl−m|v|W l,p(Ω), ∀v ∈W l,p(Ω) (4.10)

which is a classic result and can be found in standard textbooks.



Chapter 5

Anisotropic error estimates

5.1 Introduction

The goal of this chapter is to obtain an anisotropic error bound where the physical derivatives are
directly coupled with the size, shape, and orientation of mesh elements.

Generally speaking, anisotropic error estimation is more difficult and more complicated than
isotropic error estimation since the former has to take consideration of directional changes of the
solution. The benefit of so doing is a lower and oftentimes much lower error bound, especially when
the physical solution exhibits an anisotropic feature that the solution changes more significantly in
one direction than the others.

The results in this chapter have been first presented in a recent work [61]. Biographic notes on
mathematical studies of anisotropic meshes are given in §5.4.

5.2 An anisotropic error bound

A general anisotropic error bound can be obtained simply by inserting (4.4) (taking t = 0) into
(3.4),

|v −Πk,Kv|W m,q(K) ≤ C‖(F ′
K)−1‖m|det(F

′
K)|

1
q
− 1

p

×
∑

i1,...,il

hi1,K · · ·hil,K

∫
K

∣∣∣D(i1,...,il)v
∣∣∣p dx. (5.1)

It is instructive to see that for l = 1, (5.1) reduces to

|v −Πk,Kv|W m,q(K) ≤ C‖(F
′
K)−1‖m|det(F

′
K)|

1
q
− 1

p

∑
i

hi,K

∫
K

∣∣∣∣ ∂v∂xi

∣∣∣∣p dx. (5.2)

The bound (5.1) is anisotropic since it allows separate control of the length scales of K based on
the solution derivatives in the corresponding coordinate directions. For example, (5.2) shows that
hi,K can be chosen according to the magnitude of derivative (∂v)/(∂xi).

It is interesting to remark that an anisotropic error estimate similar to (5.1) has been developed
by Apel and Dobrowolski [6] and Apel [4] under the maximal angle condition and the so-called
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coordinate condition. It reads as

|v −Πk,Kv|W m,q(K) ≤ C|det(F
′
K)|

1
q
− 1

p

×
∑

i1,...,il−m

hi1,K · · ·hil−m,K

∣∣∣D(i1,...,il−m)v
∣∣∣
W m,p(K)

. (5.3)

For the purpose of comparison, (5.1) and (5.3) are written as

|v −Πk,Kv|W m,q(K) ≤ C|det(F
′
K)|

1
q
− 1

p

∑
i1,...,il−m

hi1,K · · ·hil−m,K

×
∑

il−m+1,...,il

‖(F ′
K)−1‖mhil−m+1,K · · ·hil,K

∫
K

∣∣∣D(il−m+1,...,il)D(i1,...,il−m)v
∣∣∣p dx. (5.4)

and

|v −Πk,Kv|W m,q(K) ≤ C|det(F
′
K)|

1
q
− 1

p

∑
i1,...,il−m

hi1,K · · ·hil−m,K

×
∑

il−m+1,...,il

∫
K

∣∣∣D(il−m+1,...,il)D(i1,...,il−m)v
∣∣∣p dx. (5.5)

One can see that if ‖(F ′
K)−1‖mhil−m+1,K · · ·hil,K = 1, (5.4) reduces to (5.5). But generally speaking,

‖(F ′
K)−1‖mhil−m+1,K · · ·hil,K ≥ 1. Thus, the bound given in (5.1) is generally larger than that in

(5.3). It should be pointed out, though, that the latter requires the maximal angle and coordinate
conditions whereas the former requires no such a priori conditions on the mesh.

5.3 Anisotropic error estimates independent of coordinate system

The bound given in (5.1) is anisotropic and holds on a general simplicial element. But its coupling of
the length scales of K with the directional derivatives of v in the coordinate directions is dependent
on the coordinate system. This dependence makes the bound hard to use in mesh generation.

In this section an anisotropic error estimate independent of coordinate system is derived. The
development is different from that in the previous section and considered for two separate cases
l = 1 and l ≥ 2.

5.3.1 Case l = 1

This case can happen for piecewise constant interpolation (k = 0) or a general k-th degree polyno-
mial preserving interpolation but with functions having low regularity (i.e., functions in W 1,p(Ω)
with l < k + 1). For the current case, the conditions (3.5) require that s = 0 (where s is the
maximal order of derivatives appearing ΣK̂), 0 ≤ m ≤ 1, q ≤ p, and p ≥ 1 for n = 1 and p > n for
n ≥ 2.
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Once again the basic tool is the chain-rule. By it, we have

∑
i

∣∣∣∣ ∂v̂∂ξi
∣∣∣∣p =

∑
i

∣∣∣∣∣∣
∑

j

∂xj

∂ξi

∂v̂

∂xj

∣∣∣∣∣∣
p

=
∑

i

∣∣∣(F ′
Kei)

T∇v
∣∣∣p

≤ C

(∑
i

∣∣∣(F ′
Kei)

T∇v
∣∣∣2) p

2

= C
[
tr
(
(F

′
K)T∇v∇vTF

′
K

)] p
2
,

where ei is the i-th unit vector of <n. Combining this result with (3.4) (taking l = 1) gives

|v −Πk,Kv|W m,q(K) ≤ C‖(F
′
K)−1‖m · |det(F

′
K)|

1
q
− 1

p

[∫
K

[
tr
(
(F

′
K)T∇v∇vTF

′
K

)] p
2
dx

] 1
p

. (5.6)

5.3.2 Case l ≥ 2

For l ≥ 2, taking t = 2 in (4.4) and using the chain-rule, one obtains∑
i1,...,il

|D̂(i1,...,il)v̂|p

≤ C
∑

j1,...,jl−2

hp
j1,K · · ·h

p
jl−2,K

∑
il−1,il

∣∣∣∣∣∣
∑

jl−1,jl

∂xjl−1

∂ξil−1

∂xjl

∂ξil

∂2
(
D(j1,...,jl−2)v

)
∂xjl−1

∂xjl

∣∣∣∣∣∣
p

= C
∑

j1,...,jl−2

hp
j1,K · · ·h

p
jl−2,K

∑
il−1,il

∣∣∣(F ′
Keil−1

)TH(D(j1,...,jl−2)v)(F
′
Keil)

∣∣∣p , (5.7)

whereH(D(j1,...,jl−2)v) denotes the Hessian of functionD(j1,...,jl−2)v. Denote the eigen-decomposition
of matrix H(D(j1,...,jl−2)v) by

H(D(j1,...,jl−2)v)| = Qdiag(λ1, . . . , λn)QT ,

where Q is the orthogonal matrix consisting of the (normalized) eigenvectors and the λi’s are the
eigenvalues. Define

|H(D(j1,...,jl−2)v)| = Qdiag(|λ1|, . . . , |λn|)QT . (5.8)

Lemma 5.3.1
|aTHb| ≤ 1

2
(aT |H|a+ bT |H|b) ∀a, b ∈ <n. (5.9)

Proof. Let Σ = diag(|λ1|, . . . , |λn|). Decompose Σ into

Σ = Σ+ − Σ−,
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where Σ+ and Σ− are diagonal matrices with non-negative diagonal entries. Apparently, |H| =
Q(Σ+ + Σ−)QT . Then, (5.9) follows from

|aTHb| = |(QTa)T Σ(QT b)|
≤ |(QTa)T Σ+(QT b)|+ |(QTa)T Σ−(QT b)|

= |(Σ
1
2
+Q

Ta)T (Σ
1
2
+Q

T b)|+ |(Σ
1
2
−Q

Ta)T (Σ
1
2
−Q

T b)|

≤ 1
2

(
‖Σ

1
2
+Q

Ta‖2 + ‖Σ
1
2
+Q

T b‖2 + ‖Σ
1
2
−Q

Ta‖2 + ‖Σ
1
2
−Q

T b‖2
)

=
1
2
(
aTQΣ+Q

Ta+ bTQΣ+Q
T b+ aTQΣ−Q

Ta+ bTQΣ−Q
T b
)

=
1
2
(
aT |H|a+ bT |H|b

)
. (5.10)

Using this lemma, (5.7) becomes∑
i1,...,il

|D̂(i1,...,il)v̂|p ≤ C
∑

j1,...,jl−2

hp
j1,K · · ·h

p
jl−2,K

∑
il−1,il

[
(F

′
Keil−1

)T |H(D(j1,...,jl−2)v)|(F ′
Keil−1

)

+ (F
′
Keil)

T |H(D(j1,...,jl−2)v)|(F ′
Keil)

]p
≤ C

∑
j1,...,jl−2

hp
j1,K · · ·h

p
jl−2,K

∑
i

(
(F

′
Kei)T |H(D(j1,...,jl−2)v)|(F ′

Kei)
)p

≤ C
∑

j1,...,jl−2

hp
j1,K · · ·h

p
jl−2,K

[
tr
(
(F

′
K)T |H(D(j1,...,jl−2)v)|F ′

K

)]p
.

Combining this result with the error bound (3.4) and the fact that hj1,K · · ·hjl−2,K ≤ C‖F ′
K‖l−2,

we obtain

|v −Πk,Kv|W m,q(K) ≤ C‖(F ′
K)−1‖m · ‖F ′

K‖l−2 · |det(F
′
K)|

1
q
− 1

p

×
[∫

K

[
tr
(
(F

′
K)T |H(Dl−2v)|F ′

K

)]p
dx

] 1
p

, (5.11)

where
|H(Dl−2v)| ≡

∑
i1,...,il−2

|H(D(i1,...,il−2)v)|. (5.12)

It is noted that the bounds in (5.6) and (5.11) are independent of the coordinate system because
the terms such as gradient and Hessian of v and the norm, trace, and determinant of F

′
K are all

coordinate-independent. Moreover, the Jacobian matrix F
′
K is directly coupled with the gradient

or Hessian of function v in bounds (5.6) and (5.11). Thus, in mesh generation process the choice
of the shape and orientation of K should also be determined by the gradient or Hessian of v.

5.4 Bibliographic notes

Mathematical studies of anisotropic meshes can be traced back to Synge [108], Zlámal [129],
Babus̆ka and Aziz [8], Jamet [70], and Barnhill and Gregory [12]. Research has been inten-
sified in the last decade in developing strictly mathematically-based error estimates; e.g., see
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[3, 4, 5, 6, 7, 34, 33, 37, 38, 43, 49, 53, 61, 62, 76, 78, 97, 100, 103, 104, 105]. For example,
D’Azevedo [37] and D’Azevedo and Simpson [38] introduce the concept of optimal triangles defined
through a mapping from the reference element to an arbitrary element and derive estimates of
linear interpolation error and its gradient for quadratic functions. Apel and Dobrowolski [6] and
Apel [4] obtain a general anisotropic estimate of interpolation error, (5.3), under the maximal angle
and coordinate system conditions. A number of semi-a posteriori anisotropic error estimators are
obtained by Siebert [104], Dobrowolski et al. [41], Kunert [78, 79], and Kunert and Verfeurth [80].
Particularly, Kunert [78, 79] and Kunert and Verfeurth [80] introduce the so-called matching func-
tions to measure the correspondence of the mesh to the anisotropic feature of the physical solution.
A priori and semi-a posteriori error bounds for linear elements are then obtained in terms of these
matching functions. Formaggia and Perrotto [49] obtain estimates for the L2 and H1 interpolation
error on linear finite elements in terms of the eigenvalues and eigenvectors of the Jacobian matrix
of the affine mapping from the reference element to a generic element. Their results do not require
any a priori condition and therefore are convenient to use within an automatic mesh adaptation
procedure. Recently, Picasso [97] combines the results of Formaggia and Perrotto [49] with the
Zienkiewicz-Zhu gradient recovery technique [127, 128] to obtain an a posteriori error indicator
for numerical solution of elliptic and parabolic PDEs. Motivated by work [59, 68] on variational
mesh generation, Huang [61] develops a general anisotropic estimate on interpolation error that has
been presented in this chapter. More recently, Chen et al. [33] show that some anisotropic error
estimates formally obtained in [68] are optimal.
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Chapter 6

Mesh quality measures and monitor

functions

6.1 Introduction

Mesh quality measures and monitor functions are defined in this chapter. The mesh quality mea-
sures include three element-wise measures on geometry, alignment, and equidistribution and an
overall quality measure. The quality of a mesh is assessed using the overall quality measure and a
measure on the roughness of a function.

There are several reasons why assessment of an existing mesh should be studied. First, it is
always useful to know the aspect ratio and size of mesh elements as well as how well they are
aligned with the physical solution in the numerical solution of PDEs. Second, in view of mesh
adaptation, particularly from the analysis of Chapter 2), it is important to know how closely the
alignment and equidistribution conditions, (2.3) and (2.4), are satisfied by a mesh. As will be
shown in §6.2, this requirement leads to the alignment and equidistribution measures. Third, many
existing mesh adaptation algorithms produce meshes but without knowing their quality. Finally,
as will demonstrated in later chapters, a better understanding of the correspondence of a mesh to
the solution behavior will help design more robust and effective mesh adaptation algorithms.

As a matter of fact, mesh assessment has been extensively studied in the context of finite
elements; see the review paper [5] and references therein. It should be pointed out that most of
existing work is restricted to non-adaptive, isotropic meshes. Classic examples of mesh measures
include Zlámal’s minimal angle condition [129], Babus̆ka and Aziz’s maximal angle condition [8],
and the aspect radio. Liu and Joe [86] study the shape quality measures for tetrahedron elements.
Berzins [14] proposes a mesh quality indicator which takes into account both the shape of elements
and the local solution behavior. Kunert [77] uses the so-called matching function to measure the
correspondence of a mesh to the anisotropic feature of the solution.

The development in this chapter follows the approach used in [61] but there is some difference. In
the current development for the case of anisotropic error estimation, the geometric quality measure
is bounded by a term involving the alignment quality measure. As a result, the overall mesh quality
measure (cf. (6.42) or (6.49)) does not involve the geometric quality measure. The advantage of this
treatment is that the monitor function can now be defined naturally for anisotropic error estimates.
The disadvantage is that the error estimates (cf. (6.43) and (6.50)) are slightly larger than those

27
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obtained in [61].

6.2 Mesh quality measures in view of mesh adaptation

Given a monitor function M , the analysis in Chapter 2 shows that the alignment and equidistribu-
tion conditions (2.3) and (2.4) define a precise control of the size, shape, and orientation of mesh
elements. It is thus natural to define quantities to measure how closely they are satisfied. This
results in the alignment and equidistribution measures.

Consider first the alignment condition (2.3). It is equivalent to

tr
(
JTMJ

)
= n det

(
JTMJ

) 1
n . (6.1)

Recall the arithmetic-geometric mean inequality (cf. Theorem 1.4.1) that this condition requires
all the eigenvalues of JTMJ to be equal to each other. The alignment measure can be defined as

Qali(x) =

 tr
(
JTMJ

)
n det

(
JTMJ

) 1
n

 n
2(n−1)

. (6.2)

Qali(x) measures how closely (6.1) is satisfied by a mesh. To explain this, denote the eigenvalues
of JTMJ by λ2

i , i = 1, ..., n. Let λmax = maxi λi and λmin = mini λi. In terms of the eigenvalues,
Qali(x) can be expressed as

Qali(x) =

 ∑
i λ

2
i

n
(∏

i λ
2
i

) 1
n

 n
2(n−1)

.

The arithmetic-geometric mean inequality implies that Qali(x) ≥ 1. Also,

Qali(x) ≤

 nλ2
max

n
(
λ2

maxλ
2(n−1)
min

) 1
n


n

2(n−1)

≤ λmax

λmin
.

A refined version of the arithmetic-geometric mean inequality [75] reads as

1
n(n− 1)

∑
i<j

(λi − λj)
2 ≤ 1

n

∑
i

λ2
i −

(∏
i

λ2
i

) 1
n

≤ 1
n

∑
i<j

(λi − λj)
2 . (6.3)

Using the left inequality we have

Q
2(n−1)

n
ali (x)− 1 ≥ 1

n(n− 1)

∑
i<j (λi − λj)

2(∏
i λ

2
i

) 1
n

≥ 1
n(n− 1)

(λmax − λmin)2

λ
2
n
minλ

2(n−1)
n

max

≥ 1
n(n− 1)

[(
λmax

λmin

) 1
n

−
(
λmin

λmax

)n−1
n

]2

≥ 1
n(n− 1)

[(
λmax

λmin

) 1
n

− 1

]2



6.2. MESH QUALITY MEASURES IN VIEW OF MESH ADAPTATION 29

or
λmax

λmin
≤

[
1 +

√
n(n− 1)

(
Q

2(n−1)
n

ali (x)− 1
)]n

.

Summarizing the above results we obtain

Theorem 6.2.1

1 ≤ Qali(x) ≤

√
λmax(JTMJ)
λmin(JTMJ)

≤

[
1 +

√
n(n− 1)

(
Q

2(n−1)
n

ali (x)− 1
)]n

, (6.4)

where λmax(JTMJ) and λmin(JTMJ) denote the maximum and minimum eigenvalues of JTMJ .

Thus, Qali(x) = 1 if and only if λmax = λmin. The latter equality implies JTMJ = θ−1(x)I
or J−T J−1 = θ(x)M(x) for some scalar function θ = θ(x). From the analysis in Chapter 2, one
can conclude that when Qali(x) = 1, the shape and orientation of mesh elements are completely
controlled by M(x). Inequality (6.4) also shows that the more largely the eigenvalues are different
from each other, the larger the difference the ratio λmax/λmin and therefore the quantity Qali(x)
are. In this sense, Qali(x) indeed provides a measure on how well the mesh are aligned with the
monitor function M(x). It is useful to mention that Qali(x) characterizes the shape of elements
and has the range [1,∞).

The alignment quality measure can be also defined based on the inverse of the Jacobian matrix,

Q̂ali(x) =

 tr
(
J−1M−1J−T

)
n det

(
J−1M−1J−T

) 1
n

 n
2(n−1)

. (6.5)

It is not difficult to show that Q̂ali(x) has the same properties as Qali(x) does. Particularly,

1 ≤ Q̂ali(x) ≤

√
λmax(JTMJ)
λmin(JTMJ)

≤

[
1 +

√
n(n− 1)

(
Q̂

2(n−1)
n

ali (x)− 1
)]n

. (6.6)

We now consider the equidistribution condition (2.4). Define the equidistribution measure as

Qeq(x) =
Jρ|Ωc|
σ

, (6.7)

where σ =
∫
Ω ρ(x)dx and ρ =

√
det(M) is the adaptation function. Qeq(x) has a range (0,∞),

with the average value being 1: (1/|Ωc|)
∫
Ωc
Qeq(x(ξ))dξ = 1. As a consequence, maxxQeq(x) = 1

implies Qeq(x) ≡ 1, ∀x ∈ Ω, which in turn means that the equidistribution condition (2.4) holds
exactly. Moreover, the farther Jρ|Ωc| deviates from constant σ, the larger maxxQeq is. Hence, Qeq

measures how closely the equidistribution condition (2.4) is satisfied by the mesh. It is remarked
that Qeq characterizes the size of mesh elements.
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In addition to alignment and equidistribution, it is also useful to know how skewed an element
is. The aspect ratio is a natural measure. A measure easier to compute is the so-called geometric
quality measures defined as

Qgeo(x) =

 tr
(
JT J

)
n det

(
JT J

) 1
n

 n
2(n−1)

=

[
‖J‖F
√
n |J |

1
n

] n
(n−1)

, (6.8)

Q̂geo(x) =

 tr
(
J−1J−T

)
n det

(
J−1J−T

) 1
n

 n
2(n−1)

=

[
‖J−1‖F
√
n |J |−

1
n

] n
(n−1)

, (6.9)

where ‖ · ‖F is the Frobenius matrix norm. One may notice that Qgeo simply is Qali with M = I

and Q̂geo is defined based on the inverse Jacobian matrix. Similar to Theorem 6.2.1, we have

Theorem 6.2.2

1 ≤ Qgeo(x) ≤

√
λmax(JT J)
λmin(JT J)

≤

[
1 +

√
n(n− 1)

(
Q

2(n−1)
n

geo (x)− 1
)]n

, (6.10)

1 ≤ Q̂geo(x) ≤

√
λmax(JT J)
λmin(JT J)

≤

[
1 +

√
n(n− 1)

(
Q̂

2(n−1)
n

geo (x)− 1
)]n

, (6.11)

where λmax(JT J) and λmin(JT J) denote the maximum and minimum eigenvalues of JT J .

Observing that
√
λmax(JT J)/λmin(JT J) is actually the element aspect ratio (in the continuous

form, cf. Chapter 2), one can conclude that Qgeo and Q̂geo are equivalent to the aspect ratio. Qgeo

and Q̂geo have a range of [1,∞) and characterize the shape of mesh elements.
In the following we explore the relations between Qali and Q̂ali with Qgeo and Q̂geo. Let the

eigen-decomposition of M be

M = Qdiag(λ1, ..., λn)QT ,

where Q is an orthogonal matrix and λi > 0. Let

(QT J)T = [a1, ..., an],

where ai’s are column vectors. Then,

tr
(
JTMJ

)
= tr

(
(QT J)T diag(λ1, ..., λn)(QT J)

)
= tr

(∑
i

λiaia
T
i

)
=

∑
i

λi‖ai‖2.
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It follows

tr
(
JT J

)
= tr

(
(QT J)T (QT J)

)
=

∑
i

‖ai‖2

=
∑

i

λ−1
i

(
λi‖ai‖2

)
≤

(∑
i

λ−1
i

)
·

(∑
i

λi‖ai‖2
)

or
tr
(
JT J

)
≤ tr(M−1) · tr

(
JTMJ

)
. (6.12)

Thus,
tr
(
JT J

)
n|J |

2
n

≤ tr(M−1)

ρ−
2
n

·
tr
(
JTMJ

)
n|J |

2
nρ

2
n

or

Q
2(n−1)

n
geo ≤ Q

2(n−1)
n

ali · tr(M
−1)

ρ−
2
n

, (6.13)

where we recall that ρ =
√

det(M). Similarly, one can get

Q̂
2(n−1)

n
geo ≤ Q̂

2(n−1)
n

ali · tr(M)

ρ
2
n

. (6.14)

Note that these inequalities are not sharp. But they are good enough for our purpose – to bound
the geometry quality measures using the alignment measures.

6.3 The case with isotropic error estimation

The mesh quality measures have been considered in the previous section intuitively in view of mesh
adaptation and for a given monitor function. They can be studied more concretely based on an
error bound. This is done in this and next two sections based on the isotropic and anisotropic error
estimates obtained in Chapters 4 and 5.

6.3.1 Mesh quality measures and monitor function

The development is based on the isotropic error bound (4.5). Taking q power on the both sides
and summing overall the elements, one gets

|v −Πkv|qW m,q(Ω) ≡
∑
K

|v −Πk,Kv|qW m,q(K)

≤ C
∑
K

|K| · ‖(F ′
K)−1‖mq · ‖F ′

K‖lq · 〈v〉
q
W l,p(K)

, ∀v ∈W l,p(Ω) (6.15)

where we have used |K| = |det(F
′
K)| and

〈v〉W l,p(K) =

 1
|K|

∫
K

∑
i1,...,il

∣∣∣D(i1,...,il)v
∣∣∣p dx

 1
p

=
(

1
|K|

∫
K
‖Dlv‖plpdx

) 1
p

.
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We use a continuous form to simplify the derivation. For this purpose, we assume that an
affine, quasi-uniform mesh Tc,h can be defined on Ω such that it has the same connectivity as Th
does. When associated with this quasi-uniform mesh, Ω will be considered as the “computational”
domain Ωc, and the coordinate on it is denoted by ξ. Then, a piecewise linear, global coordinate
transformation x = x(ξ) : Ωc → Ω can be defined as

x(ξ) := FK(F−1
Kc

(ξ)), ∀ξ ∈ Kc, ∀Kc ∈ Tc,h

where K and Kc are the corresponding elements on Ω and Ωc, respectively, and FK : K̂ → K and
FKc : K̂c → K are linear mappings. The definition is illustrated in Fig. 6.1.

€ 

ˆ K 

€ 

Kc

€ 

K
€ 

FK

€ 

FK c

€ 

Ωc :=Ω
Quasi-uniform mesh Non-uniform mesh

€ 

Ω

  

€ 

FK o FKc

−1

€ 

x = x(ξ)

Figure 6.1: The definition of the piecewise linear coordinate transformation x = x(ξ) is illustrated.

The local and global mappings can be connected as follows. First recall that

J =
∂x

∂ξ
, J = det(J),

and N is the number of the elements in Th. By assumption, |Ωc| = O(1) and |K̂| = 1. It is not
difficult to get

F
′
K = J · F ′

Kc
, |K| ≈ N−1J, ‖F ′

K‖ ≈ N− 1
n ‖J‖. (6.16)

Using these relations, from (6.15) we have

|v −Πkv|qW m,q(Ω) ≤ CN− (l−m)q
n

∑
K

|K| · ‖J−1‖mq · ‖J‖lq ·
(

1
|K|

∫
K
‖Dlv‖plpdx

) q
p

→ CN− (l−m)q
n

∫
Ω
‖J−1‖mq · ‖J‖lq · ‖Dlv‖qlpdx,

where the limit is taken as maxK diam(K)→ 0. Hereafter, for simplicity this asymptotical bound
will be denoted by

|v −Πkv|qW m,q(Ω)

<→ CN− (l−m)q
n

∫
Ω
‖J−1‖mq · ‖J‖lq · ‖Dlv‖qlpdx. (6.17)

In the following development the factors ‖J−1‖ and ‖J‖ are replaced with det(J) via the
geometric quality measurea and then det(J) is replaced with ‖Dlv‖lp through the equidistribution
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measure. Specifically, from the geometric measures (6.8) and (6.9),

‖J‖ ≤ ‖J‖F ≤
√
nQ

n−1
n

geo · |J |
1
n ,

‖J−1‖ ≤ ‖J−1‖F ≤
√
n Q̂

n−1
n

geo · |J |−
1
n .

Inserting these into (6.17) yields

|v −Πkv|qW m,q(Ω)

<→ CN− (l−m)q
n

∫
Ω
Q̂

mq(n−1)
n

geo ·Q
lq(n−1)

n
geo · |J |

(l−m)q
n · ‖Dlv‖qlpdx. (6.18)

We are now in a position to define the monitor function. The idea is to define M such that
the right-hand side of (6.18) has a lowest bound attained on an M -specified mesh. (An M -specified
mesh is a mesh that satisfies the alignment and equidistribution conditions (2.3) and (2.4).) Let

B[ξ] =
∫

Ω
Q̂

mq(n−1)
n

geo ·Q
lq(n−1)

n
geo · |J |

(l−m)q
n · ‖Dlv‖qlpdx. (6.19)

Since this bound involves only the geometric quality measures, it is natural to generate the mesh
such that its elements are close to being equilateral. Thus, choose

M = θ(x)I (6.20)

for some scalar function θ = θ(x). For a mesh specified by this monitor function, the alignment
condition (2.3) implies that Qgeo(x) ≡ 1 and Q̂geo(x) ≡ 1. Thus,

B[ξ] =
∫

Ω
|J |

(l−m)q
n · ‖Dlv‖qlpdx. (6.21)

To completely determine M , we need to define ρ ≡
√

det(M). To this end, we prove the
following theorem.

Theorem 6.3.1 (Optimality of equidistribution) Given a real number s > 0 and a positive
function ρ = ρ(x) defined on Ω. Then the functional has a lower bound,

I[ξ] ≡
∫

Ω
ρ(|J |ρ)sdx ≥ σ

(
σ

|Ωc|

)s

, (6.22)

where σ =
∫
Ω ρdx, among all invertible coordinate transformation ξ = ξ(x) : Ω → Ωc. The

functional attains its lower bound on an equidistributing mesh which satisfies Qeq(x) ≡ 1 or the
equidistribution condition (2.4).

Proof. Taking t = −1, w = ρ/σ and f = ρ in Theorem 1.2.1, it follows(∫
Ω
(|J |ρ)s ρ

σ
dx

) 1
s

≥
(∫

Ω
(|J |ρ)−1 ρ

σ
dx

)−1

=
σ

|Ωc|
,

which yields (6.22).
It is obvious that an equidistributing mesh for ρ gives the lower bound.
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This theorem states that the equidistributing mesh for ρ is an optimal mesh in the sense that
it minimizes the functional I[ξ]. It can also be used to define the optimal function ρ. Indeed, by
comparing I[ξ] with B[ξ] given in (6.21), one can get

ρ = ‖Dlv‖
nq

n+(l−m)q

lp
. (6.23)

With this choice, we have

M = ‖Dlv‖
2q

n+(l−m)q

lp
I. (6.24)

Unfortunately, the monitor function defined in (6.24) is not always positive definite since the
term on the right-hand side can vanish locally. To avoid the difficulty, we regularize (6.18) with a
positive parameter αiso in such a way that

|v −Πkv|qW m,q(Ω)

<→ CN− (l−m)q
n

∫
Ω
Q̂

mq(n−1)
n

geo ·Q
lq(n−1)

n
geo · |J |

(l−m)q
n ·

(
α+ ‖Dlv‖lp

)q
dx

= CN− (l−m)q
n αq

iso

∫
Ω
Q̂

mq(n−1)
n

geo ·Q
lq(n−1)

n
geo · |J |

(l−m)q
n ·

(
1 +

1
αiso
‖Dlv‖lp

)q

dx. (6.25)

Following the same procedure, one obtains the adaptation and monitor functions as

ρ = ρiso(x) ≡
[
1 +

1
αiso
‖Dlv‖lp

] nq
n+q(l−m)

, (6.26)

M = Miso(x) ≡
[
1 +

1
αiso
‖Dlv‖lp

] 2q
n+q(l−m)

I. (6.27)

The parameter αiso is often referred to as the intensity parameter in the context of mesh
adaptation since it controls the intensity of mesh concentration. It is suggested in [58] that αiso be
chosen such that (i) the monitor function Miso is invariant under the scaling transformation of v
and (ii) σ ≡

∫
Ω ρisodx ≤ C for some constant C. For the current situation,

σ ≡
∫

Ω
ρiso(x)dx

≤ C1

∫
Ω

[
1 + α

− nq
n+q(l−m)

iso ‖Dlv‖
nq

n+q(l−m)

lp

]
dx

= C1

[
|Ω|+ α

− nq
n+q(l−m)

iso

∫
Ω
‖Dlv‖

nq
n+q(l−m)

lp
dx

]
.

Thus, by choosing

αiso =
[

1
|Ω|

∫
Ω
‖Dlv‖

nq
n+q(l−m)

lp
dx

]n+q(l−m)
nq

, (6.28)

we have σ ≤ 2C1|Ω| and ρiso(x) (and therefore M(x)) is invariant under the scaling transformation
of v.

Theorem 6.3.1 and inequality (6.25) imply that the interpolation error has a bound on an
M -specified mesh as

|v −Πkv|W m,q(Ω)
<→ CN− (l−m)

n αiso
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or
|v −Πkv|W m,q(Ω)

<→ CN− (l−m)
n |v|

W
l,

nq
n+q(l−m) (Ω)

,

where σ ≤ C has been used.
On a general mesh, from the definitions for Qeq (6.7) and ρ (6.26) we can rewrite (6.25) into

|v −Πkv|qW m,q(Ω)

<→ CN− (l−m)q
n αq

iso

∫
Ω
Q̂

mq(n−1)
n

geo ·Q
lq(n−1)

n
geo ·Q

(l−m)q
n

eq · ρisodx, (6.29)

where once again σ ≤ C has been used. Define the overall mesh quality measure as

Qmesh,iso =
[

1
σ

∫
Ω

(
Q̂

m(n−1)
n

geo ·Q
l(n−1)

n
geo ·Q

(l−m)
n

eq

)q

ρisodx

] 1
q

, (6.30)

which is the weighted (with weight function ρiso) Lq norm of Q̂
m(n−1)

n
geo Q

l(n−1)
n

geo Q
(l−m)

n
eq . With this

definition, we obtain an interpolation error bound as

|v −Πkv|W m,q(Ω)
<→ C N− (l−m)

n Qmesh,iso αiso (6.31)

or
|v −Πkv|W m,q(Ω)

<→ C N− (l−m)
n Qmesh,iso |v|

W
l,

nq
n+q(l−m) (Ω)

. (6.32)

6.3.2 Mesh assessment

An existing adaptive mesh is assessed by comparing the interpolation error thereon to its counter-
part on a uniform mesh with the same number of elements.

Recall that the interpolation error is bounded by

|v −Πk,Kv|W m,q(Ω) ≤ C N− (l−m)
n |v|W l,p(Ω) (6.33)

on a uniform mesh of N elements (cf. (4.10)). Let

Qsoln,iso =
〈v〉W l,p(Ω)

〈v〉
W

l,
nq

n+q(l−m) (Ω)

. (6.34)

Upon the assumption q ≤ p, we have nq/(n+ q(l −m)) ≤ p and therefore Qsoln,iso ≥ 1. Theorem
1.2.1 implies that when nq/(n + q(l −m)) < p, Qsoln,iso = 1 if and only if Dlv is constant. The
rougher Dlv is, the larger Qsoln,iso is and the more difficult v is approximated numerically. Thus,
Qsoln,iso measures how rough v is. For this reason, Qsoln,iso is referred to as the roughness measure.

The bound (6.50) can now be rewritten as

|v −Πk,Kv|W m,q(Ω)
<→ C N− (l−m)

n |v|W l,p(Ω)

Qmesh,iso

Qsoln,iso
. (6.35)

Thus, the overall mesh quality should be considered good if Qmesh,iso � Qsoln,iso or the adaptive
mesh leads to a much smaller error than that on a uniform mesh. On the other hand, when
the solution is smooth (i.e., Qsoln,iso is small), an adaptive mesh cannot be expected to have a
significant improvement in accuracy over a uniform mesh. In that case, an adaptive mesh with
Qmesh,iso = O(Qsoln,iso) = O(1) should be considered to have a good quality. To summarize, a
mesh has a good overall quality if Qmesh,iso = O(1) or Qmesh,iso � Qsoln,iso.
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6.4 The case with anisotropic error estimation: l = 1

The mesh quality measures and monitor function for this case are developed based on the anisotropic
error bound given in (5.6).

6.4.1 Mesh quality measures and monitor function

Taking q power on both sides of (5.6) and summing over all the elements, we have

|v −Πkv|qW m,q(Ω) ≤ C
∑
K

|K| · ‖(F ′
K)−1‖mq

×
[

1
|K|

∫
K

[
tr
(
(F

′
K)T∇v∇vTF

′
K

)] p
2
dx

] q
p

.

From (6.16), the above inequality can be written in a continuous form as

|v −Πkv|qW m,q(Ω)

<→ C N− (1−m)q
n

∫
Ω
‖J−1‖mq

[
tr
(
JT∇v∇vT J

)] q
2 dx.

The right-hand-side term is regularized with a positive constant αani,1 > 0 in a way that

|v −Πkv|qW m,q(Ω)

<→ C αq
ani,1N

− (1−m)q
n

∫
Ω
‖J−1‖mq

[
tr

(
JT

[
I +

1
α2

ani,1

∇v∇vT

]
J

)] q
2

dx. (6.36)

As for (6.12), it can be shown

tr
(
J−1J−T

)
≤ tr

J−1

[
I +

1
α2

ani,1

∇v∇vT

]−1

J−T

 · tr(I +
1

α2
ani,1

∇v∇vT

)
.

Taking the monitor function into the form

M(x) = θ(x)

[
I +

1
α2

ani,1

∇v∇vT

]
, (6.37)

where θ = θ(x) is a to-be-determined scalar function, from the definitions of the alignment measures
we have

tr

(
JT

[
I +

1
α2

ani,1

∇v∇vT

]
J

)
= Q

2(n−1)
n

ali n |J |
2
n det

(
I +

1
α2

ani,1

∇v∇vT

) 1
n

,

tr

J−1

[
I +

1
α2

ani,1

∇v∇vT

]−1

J−T

 = Q̂
2(n−1)

n
ali n |J |−

2
n det

(
I +

1
α2

ani,1

∇v∇vT

)− 1
n

.

Combining the above results, we get

|v −Πkv|qW m,q(Ω)

<→ C αq
ani,1N

− (1−m)q
n

∫
Ω
dx Q̂

mq(n−1)
n

ali Q
q(n−1)

n
ali |J |

(1−m)q
n

×det

(
I +

1
α2

ani,1

∇v∇vT

) (1−m)q
2n

[
tr

(
I +

1
α2

ani,1

∇v∇vT

)]mq
2

. (6.38)
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Notice that

det

(
I +

1
α2

ani,1

∇v∇vT

)
= 1 +

1
α2

ani,1

‖∇v‖2,

tr

(
I +

1
α2

ani,1

∇v∇vT

)
= 1 +

1
α2

ani,1

‖∇v‖2.

Thus,

|v −Πkv|qW m,q(Ω)

<→ C αq
ani,1N

− (1−m)q
n

∫
Ω
dx Q̂

mq(n−1)
n

ali Q
q(n−1)

n
ali |J |

(1−m)q
n

×

(
1 +

1
α2

ani,1

‖∇v‖2
) (1−m)q

2n
+mq

2

.

From Theorem 6.3.1), the optimal adaptation function can be defined as

ρ = ρani,1(x) ≡

(
1 +

1
α2

ani,1

‖∇v‖2
) (1−m)q+nmq

2(n+(1−m)q)

, (6.39)

and the monitor function is given by

M = Mani,1(x) ≡

(
1 +

1
α2

ani,1

‖∇v‖2
) mq−1

n+(1−m)q
[
I +

1
α2

ani,1

∇v∇vT

]
. (6.40)

The intensity parameter αani,1 can be defined using the same considerations for αiso in the
previous section, viz., scaling invariance and σ =

∫
Ω ρdx ≤ C for some constant C. This gives

αani,1 =
[

1
|Ω|

∫
Ω
‖∇v‖

(1−m)q+nmq
n+q(1−m)

] n+q(1−m)
(1−m)q+nmq

. (6.41)

Defining the overall mesh quality measure as

Qmesh,ani,1 =
[

1
σ

∫
Ω

(
Q̂

m(n−1)
n

ali Q
(n−1)

n
ali Q

(1−m)
n

eq

)q

ρani,1dx

] 1
q

, (6.42)

from (6.38) the interpolation error on a general mesh can be bounded as

|v −Πkv|W m,q(Ω)
<→ C N− (1−m)

n Qmesh,ani,1 |v|
W

1,
(1−m)q+nmq

n+q(1−m) (Ω)
. (6.43)

6.4.2 Mesh assessment

Once again, an existing adaptive mesh is assessed by comparing the interpolation error thereon to
its counterpart on a uniform mesh of the same number of elements.

For the current situation l = 1, a bound of interpolation error on a uniform mesh is given in
(6.33) with l = 1. From (6.33) and (6.43), the solution roughness can be defined as

Qsoln,ani,1 =
〈v〉W 1,p(Ω)

〈v〉
W

1,
(1−m)q+nmq

n+q(1−m) (Ω)

. (6.44)
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From (6.43) the error bound reads as

|v −Πk,Kv|W m,q(Ω)
<→ C N− (1−m)

n |v|W 1,p(Ω)
Qmesh,ani,1

Qsoln,ani,1
.

Thus, a mesh has a good overall quality when Qmesh,ani,1 = O(1) or Qmesh,ani,1 � Qsoln,ani,1.

6.5 The case with anisotropic error estimation: l ≥ 2

The procedure is the same as in the previous section but the development is now based on the
bound (5.11).

6.5.1 Mesh quality measures

Taking q power on both sides of (5.11) and summing over all the elements gives

|v −Πkv|qW m,q(Ω) ≤ C
∑
K

|K| · ‖(F ′
K)−1‖mq · ‖F ′

K‖q(l−2)
〈
tr
(
(F

′
K)T |H(Dl−2v)|F ′

K

)〉q

Lp(K)
.

Rewriting in a continuous form and regularizing the right-hand side term with αani,2 > 0, we get

|v −Πkv|qW m,q(Ω)

<→ C αq
ani,2N

− (l−m)q
n

×
∫

Ω
‖J−1‖mq · ‖J‖q(l−2)

[
tr
(

JT

[
I +

1
αani,2

|H(Dl−2v)|
]

J

)]q

dx.

As for (6.16), we have

tr
(
J−1J−T

)
≤ tr

(
J−1

[
I +

1
αani,2

|H(Dl−2v)|
]−1

J−T

)
· tr
(
I +

1
αani,2

|H(Dl−2v)|
)
,

tr
(
JT J

)
≤ tr

(
JT

[
I +

1
αani,2

|H(Dl−2v)|
]

J

)
· tr

([
I +

1
αani,2

|H(Dl−2v)|
]−1
)
.

Taking

M = θ(x)
[
I +

1
αani,2

|H(Dl−2v)|
]
,

where θ = θ(x) is a scalar function to be determined, it follows from the definitions of the alignment
measures that

‖J−1‖2F ≤ Q̂
2(n−1)

n
ali |J |−

2
n n det

(
I +

1
αani,2

|H(Dl−2v)|
)− 1

n
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(
I +

1
αani,2

|H(Dl−2v)|
)
,

‖J‖2F ≤ Q
2(n−1)

n
ali |J |

2
n n det

(
I +

1
αani,2

|H(Dl−2v)|
) 1

n
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([
I +

1
αani,2

|H(Dl−2v)|
]−1
)
,

tr
(

JT

[
I +

1
αani,2

|H(Dl−2v)|
]

J

)
= Q

2(n−1)
n

ali |J |
2
n n det

(
I +

1
αani,2

|H(Dl−2v)|
) 1

n

.
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Combining the above results leads to

|v −Πkv|qW m,q(Ω)

<→ C αq
ani,2N

− (l−m)q
n

∫
Ω
dx Q̂

mq(n−1)
n

ali Q
ql(n−1)

n
ali |J |

(l−m)q
n

×det
(
I +

1
αani,2

|H(Dl−2v)|
) (l−m)q

2n
[
tr
(
I +

1
αani,2

|H(Dl−2v)|
)]mq

2

×

[
tr

([
I +

1
αani,2

|H(Dl−2v)|
]−1
)] (l−2)q

2

. (6.45)

From this, the optimal adaptation and monitor functions can be defined as

ρ = ρani,2 ≡ det
(
I +

1
αani,2

|H(Dl−2v)|
) (l−m)q

2(n+(l−m)q)

×
[
tr
(
I +

1
αani,2

|H(Dl−2v)|
)] mnq

2(n+(l−m)q)

×

[
tr

([
I +

1
αani,2

|H(Dl−2v)|
]−1
)] (l−2)nq

2(n+(l−m)q)

(6.46)

and

M = Mani,2(x) ≡ ρ
2
n
ani,2 det

(
I +

1
αani,2

|H(Dl−2v)|
)− 1

n
[
I +

1
αani,2

|H(Dl−2v)|
]
. (6.47)

For the current case, the intensity parameter αani,2 has to be defined implicitly, i.e.,∫
Ω
ρani,2dx = 2|Ω| . (6.48)

Defining the overall mesh quality measure as

Qmesh,ani,2 =
[

1
σh

∫
Ω

(
Q̂

m(n−1)
n

ali Q
l(n−1)

n
ali Q

(l−m)
n

eq

)q

ρani,2dx

] 1
q

. (6.49)

From (6.45) the error is bounded by

|v −Πk,Kv|W m,q(Ω)
<→ CN− (l−m)

n αani,2Qmesh,ani,2. (6.50)

From (6.46) and (6.48), an estimate can be obtained for αani,2:

αani,2 ≤ C
[∫

Ω
tr
(
|H(Dl−2v)|

) lnq
2(n+(l−m)q)

dx

] 2(n+(l−m)q)
lnq

≈ C|v|
W

l,
lnq

2(n+(l−m)q) (Ω)
. (6.51)

Note that this estimate is very rough, particularly when l > 2.



40 CHAPTER 6. MESH QUALITY MEASURES AND MONITOR FUNCTIONS

6.5.2 Mesh assessment

An existing adaptive mesh is assessed by comparing the interpolation error thereon to its counter-
part on a uniform mesh of the same number of elements.

For the current situation l ≥ 2, a bound of interpolation error on a uniform mesh is given in
(6.33). From (6.33) and (6.50), the solution roughness can be defined as

Qsoln,ani,2 =
〈v〉W l,p(Ω)

αani,2
. (6.52)

The error bound (6.50) reads as

|v −Πk,Kv|W m,q(Ω)
<→ C N− (l−m)

n |v|W l,p(Ω)

Qmesh,ani,2

Qsoln,ani,2
.

Thus, a mesh has a good overall quality when Qmesh,ani,2 = O(1) or Qmesh,ani,2 � Qsoln,ani,2.



Chapter 7

Ansiotropic mesh adaptation:

Refinement approach

7.1 Introduction

The objective of this chapter is to develop a general formula of the metric tensor for use with
h-version meshing strategies and software for the generation of unstructured anisotropic meshes.

Refinement or h-version adaptation has been the most popular approach in use for generating
unstructured meshes in finite element computation because of its reliability and simplicity in con-
cept. Typically with the approach, a local error estimate is computed and then local minimization
tools, such as edge suppression, vertex suppression, vertex addition, edge swapping, and vertex
reallocation, are employed to generate the needed adaptive mesh; e.g., see [51, 31, 42, 43].

For the generation of adaptive anisotropic meshes, the common practice with the refinement
approach is to generate them as quasi-uniform meshes in the metric determined by a tensor (or a
matrix-valued function) that specifies the size, shape, and orientation of elements throughout the
domain. Such a metric tensor plays a similar role as the monitor function used and defined in
Chapters 2 and 6. Their relation is discussed in this chapter.

A number of meshing strategies have been developed in the last decade for generating anisotropic
meshes according to a given metric tensor. Examples are the Delaunay triangulation method
[16, 17, 31, 95], the advancing front method [50], the bubble mesh method [122], and the method
combining local modification with smoothing or node movement [3, 18, 43, 53]. About a dozen of
computer codes, mostly in two dimensions, have been developed or modified with the anisotropic
mesh option; e.g., see the meshing software survey by Owen [94]. Among these meshing strategies
and computer codes, the metric tensor is commonly defined based on the Hessian of the physical
solution and largely motivated by by the results of D’Azevedo [37] and D’Azevedo and Simpson
[38] on linear interpolation for quadratic functions on triangles. For example, Castro-Dı́az et al.
[31], Habashi et al. [53], and Remacle et al. [98] define their metric tensor as M = |H(v)|. (Here
we use the calligraphic letterM, compared to M for the monitor function.) The metric tensorM
is further modified by imposing the maximal and minimal edge lengths to guarantee its positive
definiteness and avoid unrealistic metric. In his two dimensional anisotropic mesh generation code

41
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BAMG, Hecht [57] uses

M =
1

ε0 · Coef2
· |H(v)|
max{CutOff, |v|}

(7.1)

for the relative error and
M =

1
ε0 · Coef2

· |H(v)|
sup(v)− inf(v)

(7.2)

for the absolute error, where ε0, Coef, and CutOff are the user specified parameters used for setting
the level of the linear interpolation error (with default value 10−2), the value of a multiplicative
coefficient on the mesh size (with default value 1), and the limit value of the relative error evaluation
(with default value 10−5), respectively. In [52], George and Hecht define the metric tensor for various
norms of the interpolation error as

M =
(
c0
ε0

)ν

Q

 |λ1|ν 0 0
0 |λ2|ν 0
0 0 |λ3|ν

QT , (7.3)

where λi’s are the eigenvalues of |H(v)|, Q consists of the corresponding normalized eigenvectors,
c0 is a constant, ε0 is a given error threshold, and ν = 1 for the L∞ norm and the H1 semi-norm
and ν = 1/2 for L2 norm of the error. It is emphasized that the above definitions are based on
either the results of [37] or heuristic considerations.

A general formula for the metric tensor for use in anisotropic (and isotropic) mesh generation
in any spatial dimension has been developed in [62]. It is presented in this chapter based on
the monitor function defined in Chapter 6. To be specific, the formulation is targeted for use
with a public-domain c++ code BAMG (Bidimensional Anisotropic Mesh Generator) developed by
Hecht [57]. But it should be emphasized that the strategy of formulating the metric tensor applies
straightforwardly to other meshing algorithms and codes.

BAMG is a Delaunay-type triangulator which allows the user to supply a metric tensor or a
solution defined on a background mesh. Its internal metric tensors are defined in equations (7.1) and
(7.2). The user defined metric tensor should be given in such a way that the elements of the desired
mesh are isotropic and have a unitary volume in the given metric. Once the metric is given, BAMG
employs five local minimization tools, edge suppression, vertex suppression, vertex addition, edge
swapping, and vertex reallocation (barycentering step) to generate the needed anisotropic mesh.

7.2 Metric tensor

Both the monitor function M and metric tensor M play the same role in mesh generation, i.e.,
they are used to specify the size, shape, and orientation of mesh elements throughout the physical
domain. The only difference lies in the way they specify the size of elements. Indeed, M specifies
the element size through the equidistribution condition (2.4) (also see (2.11)) while M used in
BAMG determines the element size through the unitary volume requirement∫

K

√
det(M) dx = 1, ∀K ∈ Th. (7.4)

One can easily guess that M andM are related by

M(x) = θM(x), ∀x ∈ Ω (7.5)
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where θ is a positive constant to be determined. In the following M is defined for three cases,
isotropic, anisotropic with l = 1, and anisotropic with l ≥ 2.

7.2.1 Isotropic error estimation

For this case, the monitor function Miso is given in the equation (6.27). It follows from (7.5) that

Miso(x) = θMiso(x).

Inserting this into the unitary condition (7.4) leads to

θ
n
2

∫
K
ρisodx = 1,

where ρiso =
√

det(Miso) is given in (6.26). Summing the above equation over all the elements of
Th, one gets

θ
n
2 σ = N,

where N is the number of elements of Th and σ =
∫
Ω ρisodx. Thus,

θ =
(
N

σ

) 2
n

.

It follows from (6.27) that

Miso,N (x) =
(
N

σ

) 2
n

Miso(x) =
(
N

σ

) 2
n
(

1 +
1
αiso
‖Dlv‖lp

) 2q
n+q(l−m)

I, (7.6)

where σ =
∫
Ω ρisodx, αiso is defined in (6.28), and ρiso is given in (6.26).

Sometimes it is more convenient to use an error level ε0 instead of the number of elements N
in the metric tensor. Consider the case where an error level ε0 is given for the Wm,q semi-norm of
interpolation error. From (6.28) one can see that the error bound is asymptotically proportional to
N− (l−m)

n αiso provided that the overall mesh quality measure Qmesh,iso is bounded by a relatively
small number. It is thus reasonable to set

ε0 = N− (l−m)
n αiso.

Hence,

N =
(
αiso

ε0

) n
l−m

.

Inserting this into (7.6) yields

Miso,ε0(x) =

(
1
σ

(
αiso

ε0

) n
l−m

) 2
n (

1 +
1
αiso
‖Dlv‖lp

) 2q
n+q(l−m)

I. (7.7)

Note that (7.7) holds only for m < l.
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7.2.2 Anisotropic error estimation: l = 1

In this case, the metric tensor can be obtained from the monitor function (6.40) as in the previous
subsection. Indeed, one has

Mani,1,N (x) =
(
N

σ

) 2
n

(
1 +

1
α2

ani,1

‖∇v‖2
) mq−1

n+(1−m)q
[
I +

1
α2

ani,1

∇v∇vT

]
, (7.8)

Mani,1,ε0(x) =

(
1
σ

(
αani,1

ε0

) n
1−m

) 2
n
(

1 +
1

α2
ani,1

‖∇v‖2
) mq−1

n+(1−m)q
[
I +

1
α2

ani,1

∇v∇vT

]
,(7.9)

where σ =
∫
Ω ρani,1dx, αani,1 is defined in (6.41), and ρani,1 is given in (6.39). It is noted that (7.9)

holds only for m = 0.

7.2.3 Anisotropic error estimation: l ≥ 2

In this case, the monitor function is given in (6.47). The metric tensors are

Mani,2,N (x) =
(
N

σ

) 2
n

ρ
2
n
ani,2 det

(
I +

1
αani,2

|H(Dl−2v)|
)− 1

n
[
I +

1
αani,2

|H(Dl−2v)|
]
,(7.10)

Mani,2,ε0(x) =

(
1
σ

(
αani,2

ε0

) n
l−m

) 2
n

ρ
2
n
ani,2 det

(
I +

1
αani,2

|H(Dl−2v)|
)− 1

n

×
[
I +

1
αani,2

|H(Dl−2v)|
]
, (7.11)

where σ =
∫
Ω ρani,2dx, αani,2 is defined in (6.48), and ρani,2 is given in (6.46). It is noted that

(7.11) holds only for m < l.

7.2.4 A remark on computation of metric tensor and monitor function

The formulas of the metric tensor developed in this section depend on several factors, including
the function regularity (through parameters l and p), the dimension of space (n), and the norm
used to measure interpolation error (m and q). Moreover, the formulas involve derivatives (of order
l ≤ k+1) of the physical solution, which is unknown in general. Fortunately, adaptive computation
is often carried out in an iterative fashion and approximations of the nodal values of the physical
solution on a current mesh are always available. A gradient recovery technique such as those of
Zienkiewicz and Zhu [127, 128] and Zhang and Naga [126] can then be used for computing the
needed derivatives, although their convergence has been analyzed only on isotropic meshes.

This remark also applies to the computation of the monitor function defined in Chapter 6.

7.3 Numerical experiment

In this section some two dimensional numerical results are presented for illustrative purpose. The
results are obtained with BAMG [57] in an iterative fashion: Starting from a coarse mesh, the
nodal values of the solution are obtained either from an analytical expression (for the problems
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with given analytical solutions) or by solving a PDE via a finite element method. Then the first
and second order derivatives of the solution used in the metric tensor are obtained by using a linear
least-squares fitting to the nodal values of the solution and the computed first order derivatives,
respectively. This is followed by the computation of the metric tensor according to the formulas
given in the previous section. Finally, a new mesh according to the computed metric tensor on
the current mesh (as the background mesh) is obtained by called BAMG. The process is repeated
twenty times in the computation.

Other parameters chosen in the computation are: k = 1 (for linear interpolation or linear finite
elements), l = 2, p = q = 2, and m = 0 (with the error measured in the L2 norm) or m = 1 (with
the error measured in the H1 semi-norm).

In the results presented below, e denotes the error either for linear interpolation or in the linear
finite element solution. Variables nbv and nbt denote the actual numbers of vertices and elements
of a mesh, respectively. Note that the quantity nbt is different from N used in the formulas of
the metric tensor in the previous section. The former is the actual number of the elements in a
computed mesh whereas the latter is only a user prescribed, target number of elements.

Example 7.3.1. This example is to generate an adaptive mesh for the function

v(x, y) = tanh(60y)− tanh(60(x− y)− 30), ∀(x, y) ∈ Ω ≡ (0, 1)× (0, 1). (7.12)

This function exhibits a strong anisotropic feature, simulating the interaction of a boundary layer
(on y = 0) with an oblique shock wave (along y = x− 0.5). It has been used as a test example by
a number of researchers; e.g. see [54].

Fig. 7.1 shows two typical adaptive meshes obtained with metric tensorsMani,2,N andMiso,N .
They both have correct mesh concentration. Moreover, the metric tensor Mani,2,N leads to an
anisotropic mesh (Fig. 7.1 (a) and (b)) whereas Miso,N yields an isotropic one (Fig. 7.1 (c) and
(d)). This can be seen more clearly in Fig. 7.2 where the mesh quality measures are shown as
the meshes are refined. Indeed, the geometric quality measure, ‖Qgeo‖∞, is about 2 for meshes
obtained with Miso,N (with (l,m) = (2, 0) and (l,m) = (2, 1)), indicating that the elements are
close to being equilateral. On the other hand, ‖Qgeo‖∞ � 1 for meshes obtained with Mani,2,N ,
implying that some of the elements have large aspect ratio. Furthermore, Fig. 7.1 shows an isotropic
mesh requires ten times more elements than an anisotropic mesh to attain nearly the same level of
interpolation error. This demonstrates that a significant gain can be achieved by using an isotropic
mesh which allows not only the size but also the shape and orientation of elements to adapt to the
features of the physical solution. The advantage will not deteriorate as the meshes are refined, as
can be seen from Fig. 7.3 where ‖e‖L2(Ω) and |e|H1(Ω) are shown as function of nbt for isotropic
and anisotropic adaptive meshes. For comparison purpose, the error is also shown in the figure for
a uniform mesh. It can be seen that both isotropic and anisotropic adaptive meshes lead to much
smaller interpolation error than a uniform mesh although they have different levels of accuracy
improvements.

Example 7.3.2. This example is to generate an adaptive mesh for the function

v(x, y) = tanh

(
−100

(
y − 1

2
− 1

4
sin(2πx)

)2
)
. (7.13)
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Compared to Example 8.3.1, this function exhibits a weaker anisotropic feature. Two typical
adaptive meshes obtained with Miso,N and Mani,2,N are shown in Fig. 7.4. The advantage of an
anisotropic mesh over an isotropic one is clear.

Example 7.3.3. This example is to solve the PDE

−ε∆v +
(
1 + e

x+y−0.85
2ε

)−1
(vx + vy) = − 1

2ε

(
1 + e

x+y−0.85
2ε

)−2
e

x+y−0.85
2ε (7.14)

defined on Ω ≡ (0, 1) × (0, 1). The Dirichlet boundary condition is chosen such that the exact
solution is given by

v(x, y) =
(
1 + e

x+y−0.85
2ε

)−1
. (7.15)

The solution exhibits a sharp layer along the line x + y − 0.85 = 0 when ε is small. In the
computation, ε is taken as 0.005, and the PDE is diecretized using linear triangular finite elements.
It is emphasized that for this example, the metric tensors are computed using a computed solution
of the PDE rather than the exact solution.

Two adaptive meshes of almost the same number of elements are shown in Fig. 7.5. One can see
that the anisotropic mesh gives a solution error (in the L2 norm) nearly ten times smaller than that
on the isotropic mesh. In Fig. 7.6 ‖e‖L2(Ω) and |e|H1(Ω) are shown as function of nbt for isotropic
and anisotropic adaptive meshes and a uniform mesh.



7.3. NUMERICAL EXPERIMENT 47

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

(a)

0

0.02

0.04

0.06

0.08

0.1

0.5 0.52 0.54 0.56 0.58 0.6
y

x

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

(c)

0

0.02

0.04

0.06

0.08

0.1

0.5 0.52 0.54 0.56 0.58 0.6

y

x

(d)

Figure 7.1: Example 7.3.1. (a) An anisotropic mesh obtained with Mani,2,N and (l,m) = (2, 1):
nbv = 645, nbt = 1187, |e|H1 = 0.88, and ‖e‖L2 = 1.3 × 10−3. (b) Close-up of the mesh in (a)
near (x, y) = (0.5, 0). (c) An isotropic mesh obtained withMiso,N and (l,m) = (2, 1): nbv = 7328,
nbt = 14291, |e|H1 = 0.85, and ‖e‖L2 = 1.0 × 10−3. (d): Close-up of the mesh in (c) near
(x, y) = (0.5, 0).



48 CHAPTER 7. ANSIOTROPIC MESH ADAPTATION: REFINEMENT APPROACH

1

10

100

1000

1000 10000

M
ax

im
um

 N
or

m
 o

f Q
ge

o

nbt (# of Elements)

(a)

Iso: (l,m)=(2,0)
Iso: (l,m)=(2,1)

Aniso: (l,m)=(2,0)
Aniso: (l,m)=(2,1)

1

10

100

1000 10000

M
ax

im
um

 N
or

m
 o

f Q
al

i

nbt (# of Elements)

(b)

Iso: (l,m)=(2,0)
Iso: (l,m)=(2,1)

Aniso: (l,m)=(2,0)
Aniso: (l,m)=(2,1)

1

10

1000 10000

M
ax

im
um

 N
or

m
 o

f Q
eq

nbt (# of Elements)

(c)

Iso: (l,m)=(2,0)
Iso: (l,m)=(2,1)

Aniso: (l,m)=(2,0)
Aniso: (l,m)=(2,1)

1

10

1000 10000

Q
m

es
h

nbt (# of Elements)

(d)

Iso: (l,m)=(2,0)
Iso: (l,m)=(2,1)

Aniso: (l,m)=(2,0)
Aniso: (l,m)=(2,1)

Figure 7.2: Example 7.3.1. The mesh quality measures, ‖Qgeo‖∞, ‖Qali‖∞, ‖Qeq‖∞, and Qmesh

are depicted as functions of nbt for meshes generated with various metric tensors.
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Figure 7.3: Example 7.3.1. The H1 semi-norm and the L2 norm of interpolation error are plotted
as functions of the number of elements (nbt) in (a) and (b), respectively.
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Figure 7.4: Example 7.3.2. (a) An anisotropic mesh obtained with Mani,2,N and (l,m) = (2, 1):
nbv = 583, nbt = 1094, |e|H1 = 0.90, and ‖e‖L2 = 5.2× 10−3. (b) An isotropic mesh obtained with
Miso,N and (l,m) = (2, 1): nbv = 2036, nbt = 3928, |e|H1 = 0.86, and ‖e‖L2 = 3.8× 10−3.
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Figure 7.5: Example 7.3.3. (a) An anisotropic mesh obtained with Mani,2,N , (l,m) = (2, 1), and
N = 1000: nbv = 1261, nbt = 2388, |e|H1 = 0.2, and ‖e‖L2 = 2.0 × 10−4. (b) An isotropic mesh
obtained with Miso,N , (l,m) = (2, 1), and N = 1000: nbv = 1214, nbt = 2324, |e|H1 = 1.1, and
‖e‖L2 = 3.3× 10−3.
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Figure 7.6: Example 7.3.3. The H1 semi-norm and the L2 norm of the solution error are plotted
as functions of the number of elements (nbt) in (a) and (b), respectively.



Chapter 8

Ansiotropic mesh adaptation:

Variational approach

8.1 Introduction

In the variational approach of mesh adaptation, adaptive meshes are generated as images of a
computational mesh under a coordinate transformation from the computational domain to the
physical domain. Such a coordinate transformation is determined by the so-called adaptation
functional which is commonly designed to measure the difficulty in the numerical approximation
of the physical solution. The functional often involves mesh properties and employs a monitor
function to control mesh quality and mesh concentration.

In the last two decades, the variational approach has received considerable attention from
scientists and engineers; e.g., see [19, 20, 45, 54, 59, 68, 71, 73, 74, 106, 120] and books [46, 72, 85,
114] and references therein. The approach is particularly suitable for finite difference computations.
Its implementation is simple, requiring no expertise in data structure that is necessary for the
implementation of mesh refinement. A variational method has typically been used for generating
structured meshes, but it can also be used for generating unstructured meshes; e.g., see [24].

The key to the development of variational methods is to formulate the adaptation functional.
Upon the well-posedness consideration, people usually do not directly use standard error estimates
since they lead to non-convex functionals in two and higher dimensions. Instead, most of the
existing variational methods have been developed based on other considerations such as geometric
ones. For example, Brackbill and Saltzman [20] develop a very popular method by combining mesh
concentration, smoothness, and orthogonality. Dvinsky [45] uses the energy of harmonic mappings
as his mesh adaptation functional. Brackbill [19] combines directional control with Dvinsky’s
harmonic mapping method. Knupp [71, 73] and Knupp and Robidoux [74] develop functionals based
on the idea of conditioning the Jacobian matrix of the coordinate transformation. A functional has
been developed recently by Huang [59] based on the alignment (also called isotropy or conformal)
and equidistribution considerations.

In this chapter attention is focused on the functional developed in [59]. It includes the har-
monic map method as a special example. Moreover, the terms involved in the functional have the
same dimension and this makes it relatively easy to balance among the terms. Furthermore and
most importantly, the functional is developed directly based on the alignment and equidistribution

51
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conditions (2.3) and (2.4).

8.2 Functional for mesh alignment

We first consider the alignment condition (2.3). Let the eigenvalues of matrix J−1M−1J−T be
λ1, ..., λn. By the arithmetic-mean geometric-mean inequality (cf. Theorem 1.4.1) the desired
coordinate transformation can be obtained by minimizing the difference between the two sides of
the inequality (∏

i

λi

) 1
n

≤ 1
n

∑
i

λi. (8.1)

Notice that ∑
i

λi = tr(J−1M−1J−T ) =
∑

i

(∇ξi)TM−1∇ξi,

∏
i

λi = det(J−1M−1J−T ) =
1

(Jρ)2
,

where J = det(J) and ρ =
√

det(M). Then, (8.1) becomes(
1

(Jρ)2

) 1
n

≤ 1
n

∑
i

(∇ξi)TM−1∇ξi

or equivalently

n
n
2

J
≤ ρ

(∑
i

(∇ξi)TM−1∇ξi

)n
2

. (8.2)

Integrating the above inequality over the physical domain yields

n
n
2

∫
Ωc

dξ ≤
∫

Ω
ρ

(∑
i

(∇ξi)TM−1∇ξi

)n
2

dx.

Hence, the adaptation functional associated with mesh alignment for the inverse coordinate trans-
formation ξ = ξ(x) can be defined as

Iali[ξ] =
1
2

∫
Ω
ρ

(∑
i

(∇ξi)TM−1∇ξi

)n
2

dx. (8.3)

It is remarked that functional (8.3) can also be derived from the concept of conformal norm in the
context of differential geometry [59]. Moreover, in two dimensions (n = 2), (8.3) gives the energy
of a harmonic mapping [45].

8.3 Functional for equidistribution

We now consider the equidistribution condition (2.4). Taking w = ρ, f = 1/(Jρ), r = 1, and s = γ

for any real number γ > 1 in Theorem 1.2.1, one gets∫
Ω

ρ

Jρ
dx =

∫
Ωc

dξ ≤
(∫

Ω

ρ

(Jρ)γ
dx

)1/γ

, (8.4)



8.4. MESH ADAPTATION FUNCTIONAL 53

with equality if and only if the equidistribution condition (2.4) holds. Thus, the adaptation func-
tional according to the equidistribution condition (2.4) can be defined as

Ieq[ξ] =
∫

Ω

ρ

(Jρ)γ
dx, (8.5)

where γ > 1 is a parameter.

8.4 Mesh adaptation functional

Note that neither of the functionals defined in the previous sections can alone lead to a robust mesh
adaptation method because either of them represents only one of the mesh control conditions (2.3)
and (2.4). It is necessary and natural to combine them together.

To this end, taking γ power on both sides of (8.2) and multiplying with ρ one gets

nnγ/2

∫
Ω

ρ

(Jρ)γ
dx ≤

∫
Ω
ρ

(∑
i

(∇ξi)TM−1∇ξi

)nγ
2

dx. (8.6)

On the other hand, taking γ power of (8.4) gives(∫
Ωc

dξ

)γ

≤
∫

Ω

ρ

(Jρ)γ
dx. (8.7)

For a given value θ ∈ [0, 1], a balance of the differences between the two sides of (8.6) and of (8.7)
is

θ

∫
Ω
ρ

(∑
i

(∇ξi)TM−1∇ξi

)nγ
2

dx− nnγ/2

∫
Ω

ρ

(Jρ)γ
dx

 (8.8)

+ (1− θ)nnγ/2

[∫
Ω

ρ

(Jρ)γ
dx−

(∫
Ωc

dξ

)γ]
.

Thus, the adaptation functional is

I[ξ] = θ

∫
Ω
ρ

(∑
i

(∇ξi)TM−1∇ξi

)nγ
2

dx+ (1− 2θ)n
nγ
2

∫
Ω

ρ

(Jρ)γ
dx, (8.9)

where θ ∈ [0, 1] and γ > 1 are real parameters, ρ =
√

det(M), and J = det(J). The first term
of the functional corresponds to the alignment requirement while the second term represents the
equidistribution requirement. By design, these two terms have the same dimension. The balance
between them is controlled by a dimensionless parameter θ. When θ = 1/2, only the first term
remains.

Regarding well posedness, it is noted that the first term of the functional is convex when nγ/2 ≥
1, and the existence, uniqueness, and the maximal principle for its minimizer are guaranteed; e.g.,
see [99]. It is unclear if this result can apply to the whole functional.
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8.5 Mesh equation

The coordinate transformation is governed by the Euler-Lagrange equation of functional (8.9). For
simplicity, (8.9) is rewritten as

I[ξ] = θ

∫
Ω

(∑
i

(∇ξi)T M̄−1∇ξi

)nγ
2

dx+ (1− 2θ)n
nγ
2

∫
Ω

ρ

(Jρ)γ
dx, (8.10)

where
M̄ = ρ−

nγ
2 M.

The Euler-Lagrange equation can be written as

−∇ ·

[
θnγβ

nγ
2
−1

2
M̄−1∇ξi +

(1− 2θ)γn
nγ
2 ρ

2

(
1
Jρ

)γ ∂x

∂ξi

]
= 0, i = 1, ..., n (8.11)

where β =
∑

i(∇ξi)T M̄−1∇ξi .
Practically it is more convenient to compute x = x(ξ) instead of its inverse ξ = ξ(x) since the

former explicitly defines the location of mesh points. Interchanging the roles of the dependent and
independent variables, we have the conservative form

∑
j

∂

∂ξj
J(ai)T

[
θ
nγ

2
β

nγ
2
−1M̄−1∇ξi +

(1− 2θ)γn
nγ
2 ρ

2

(
1
Jρ

)γ ∂x

∂ξi

]
= 0, i = 1, ..., n (8.12)

and the non-conservative form

θ

∑
ij

(
(ai)T M̄−1aj

) ∂2x

∂ξi∂ξj
−
∑

i

(ai)T
∑

j

∂(M̄−1)
∂ξj

aj

 ∂x

∂ξi


+

θ(nγ − 2)
2β

2
∑
ij

(
(M̄−1ai)(M̄−1aj)T

∑
k

ak(ak)T

)
∂2x

∂ξi∂ξj

−
∑

i

∑
j

(
(ai)T M̄−1aj

∑
k

(ak)T ∂(M̄−1)
∂ξj

ak

) ∂x

∂ξi


+

(1− 2θ)2(γ − 1)n
nγ
2 ρ

nβ
nγ
2
−1(Jρ)γ

∑
ij

(
ai(aj)T

) ∂2x

∂ξi∂ξj
+
∑

i

(
1
ρ

∂ρ

∂ξi

)
∂x

∂ξi

 = 0, (8.13)

where ai ≡ (∂x)/(∂ξi) and ai ≡ ∇ξi are the covariant and contravariant base vectors that are
related by

ai =
1
J

aj × ak with (i, j, k) cyclic.

The mesh equation (8.13) can be written into

∑
i,j

Ci,j
∂2x

∂ξi∂ξj
+
∑

i

bi
∂x

∂ξi
= 0, (8.14)
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where Ci,j ’s are n × n matrix-valued functions and bi’s are scalar ones. Given a monitor function
M , the discretization of (8.14) is standard, and either finite differences or finite elements can be
used. Care should be taken, however, when solving the resulting algebraic system because (8.14)
is highly nonlinear in general. (Recall that the coefficients Ci,j and bi involve the derivatives of x
with respect to ξ and the monitor function defined as function x.) In the iterative solution process,
the coefficients are typically calculated at the previous iterate and a relaxation or a quasi-time
continuation is used. Often a quasi-time method is helpful; see the moving mesh PDE approach to
be discussed in Chapter 9.

The monitor function is given in Chapter 6. See the remark in §7.2.4 on its computation based
on nodal values of the computed solution.

8.6 Numerical experiment

The results presented in this section are obtained using θ = 0.1 in the functional (8.9) and ω = 0
in monitor functions (6.47).

Example 8.6.1. This example is to generate an adaptive mesh for the function

v(x, y) = tanh(60y)− tanh(60(x− y)− 30), ∀(x, y) ∈ Ω ≡ (0, 1)× (0, 1). (8.15)

This example is used in Chapter 7 for h-version methods. Results obtained using monitor functions
Miso (6.27) and Mani,2 (6.47) with (l,m) = (2, 1)) are plotted in Figs. 8.1, 8.2, and 8.2. It is
interesting to note that in the current situation, the monitor function Mani,2 (6.47) associated
with anisotropic error estimation does not lead to a significant improvement in accuracy over Miso

associated with isotropic error estimation. This is in sharply contrast with the unstructured mesh
situation (cf. Example 7.3.1)) where a nearly ten times smaller error is resulted from using an
anisotropic metric tensor.

Example 8.6.2. This example is to generate an adaptive mesh for for a given analytical
solution

v(x, y) = tanh(30(x2 + y2 − 1
8
)) + tanh(30((x− 0.5)2 + (x− 0.5)2 − 1

8
))

+ tanh(30((x− 0.5)2 + (x+ 0.5)2 − 1
8
)) + tanh(30((x+ 0.5)2 + (x− 0.5)2 − 1

8
))

+ tanh(30((x+ 0.5)2 + (x+ 0.5)2 − 1
8
)) (8.16)

defined in [−2, 2]× [−2, 2]. An adaptive mesh is expected to concentrate around five circles. Two
adaptive meshes obtained with monitor functions Miso and Mani,2 are shown in Fig. 8.4. They are
very similar. This may largely be attributed to the isotropic feature of the function. Linear inter-
polation error and geometric quality measure are listed in Table 8.1) for isotropic and anisotropic
and uniform meshes.

Example 8.6.3. This example is to generate 3D adaptive meshes for

v(x, y, z) = tanh(100((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)− 0.0625) (8.17)
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Figure 8.1: Example 8.6.1. (a) A 41×41 anisotropic mesh obtained with Mani,2 and (l,m) = (2, 1):
|e|H1 = 1.25, and ‖e‖L2 = 2.38× 10−3. (b) Close-up of the mesh in (a) near (x, y) = (0.5, 0). (c) A
41×41 isotropic mesh obtained withMiso and (l,m) = (2, 1): |e|H1 = 1.65, and ‖e‖L2 = 3.94×10−3.
(d): Close-up of the mesh in (c) near (x, y) = (0.5, 0).

defined in the unit cube. An adaptive mesh for this function is expected to concentrate near the
sphere centered at (0, 0, 0) with radius 0.25. Results are shown in Table 8.2 and Fig. 8.5.
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Figure 8.2: Example 8.6.1. Mesh quality measures as function of the number of nodes.

Example 8.6.4. The example is to generate 3D adaptive meshes for

v(x, y, z) = tanh(30.0(x2 + y2 + z2 − 0.1875))

+ tanh(30((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.1875))

+ tanh(30((x− 0.5)2 + (y + 0.5)2 + (z − 0.5)2 − 0.1875))

+ tanh(30((x+ 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − 0.1875))

+ tanh(30((x+ 0.5)2 + (y + 0.5)2 + (z − 0.5)2 − 0.1875))

+ tanh(30((x− 0.5)2 + (y − 0.5)2 + (z + 0.5)2 − 0.1875))

+ tanh(30((x− 0.5)2 + (y + 0.5)2 + (z + 0.5)2 − 0.1875))

+ tanh(30((x+ 0.5)2 + (y − 0.5)2 + (z + 0.5)2 − 0.1875))

+ tanh(30((x+ 0.5)2 + (y + 0.5)2 + (z + 0.5)2)− 0.1875)) (8.18)

defined in the cube (−2, 2)× (−2, 2)× (−2, 2). An adaptive mesh is shown in Fig. 8.6.
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Figure 8.3: Example 8.6.1. The H61 semi-norm and L2 norm of linear interpolation error are
plotted as function of the number of nodes.

Table 8.1: Linear interpolation error and geometric quality for adaptive meshes obtained for Ex-
ample 8.6.2.

mesh size |e|H1 ‖e‖∞ ‖Qgeo‖∞
Isotropic mesh with Miso and (l,m) = (2, 1)

21× 21 11.1 7.98e-1 1.33
41× 41 5.30 3.20e-1 1.64
81× 81 3.04 2.06e-1 2.61

161× 161 1.62 5.63e-2 3.20
Anisotropic mesh with Mani,2 and (l,m) = (2, 1)
21× 21 11.5 7.17e-1 1.82
41× 41 4.75 2.89e-1 2.29
81× 81 2.24 1.02e-1 4.28

161× 161 1.07 1.64e-2 3.92
Uniform mesh

21× 21 12.6 9.04e-1
41× 41 7.83 7.31e-1
81× 81 5.09 3.08e-1

161× 161 2.64 9.12e-2
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Figure 8.4: Example 8.6.2. Adaptive meshes of size 81 × 81 are obtained using the variational
method with (a) Mani,2 and (l,m) = (2, 1) and (b) Miso and (l,m) = (2, 1).

Table 8.2: Numerical results of Example 8.6.3 obtained using the variational method. e denotes
the linear interpolation error.

mesh size ‖e‖ |e|H1 ‖Qgeo‖∞ ‖Qali‖∞ ‖Qeq‖∞ Qmesh Qsoln

Isotropic mesh with Miso and (l,m) = (2, 1)
17× 17× 17 4.786e-2 4.049 1.2 1.2 1.3 1.2 1.5
33× 33× 33 8.270e-3 1.709 1.5 1.5 1.6 1.4 2.1
65× 65× 65 1.394e-3 0.650 1.7 1.7 1.9 1.6 2.5

Anisotropic mesh with Mani,2 and (l,m) = (2, 1)
17× 17× 17 4.719e-2 3.925 1.3 1.3 1.4 1.2 17
33× 33× 33 7.474e-3 1.608 2.0 2.2 1.8 1.7 50
65× 65× 65 1.671e-3 0.751 2.7 3.0 2.5 2.1 72

Uniform mesh
17× 17× 17 6.872e-2 4.933
33× 33× 33 2.493e-2 3.256
65× 65× 65 7.190e-3 1.813
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Figure 8.5: Example 8.6.3. Adaptive meshes of size 65 × 65 × 65. (a): Cutaway plot of the mesh
obtained with Winslow-type monitor function. (b): Cutaway plot of the mesh obtained with non-
scalar monitor function. (c): Plane projection of slice at Kz = 32 of the mesh in (a). (d): Plane
projection of slice at Kz = 32 of the mesh in (b).
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mesh of size 41× 41× 41 obtained with Mani,2 and (l,m) = (2, 1).



Chapter 9

Adaptive moving mesh methods:

MMPDE approach

9.1 Introduction

Adaptive moving mesh methods, or moving mesh methods for short, are a type of adaptive mesh
method specially designed for the numerical solution of time dependent PDEs. In a moving mesh
method, the mesh nodes are typically moved or reallocated continuously, via a mesh equation, to
adapt to the evolutionary feature of the physical solution. For this reason, moving mesh methods
are often referred to as dynamical or r-version adaptive methods (as compared to h- and p-version
methods in the context of finite elements).

Generally speaking, a moving mesh method can be distinguished from three aspects, the mesh
movement strategy, the PDE discretization method, and the solution procedure for the coupled sys-
tem of the physical and mesh equations. Mesh movement can be controlled by an elliptic/parabolic
system of PDEs or an error-based direct minimization process. Mesh movement strategies are typ-
ically designed in the guidance of the equidistribution principle (cf. (2.4)) which requires an error
function to be evenly distributed among all the mesh cells.

Discretization of the physical PDE on a moving mesh using finite differences or finite elements
can be done in either the quasi-Lagrange approach or the rezoning approach. In the quasi-Lagrange
approach, a physical time derivative is transformed into a time derivative along mesh trajectories,
supplemented with a convective term reflecting mesh movement. The new time derivative and the
extra convection term are typically treated in the same way as other terms in the physical PDE
during the discretization process. On the other hand, in the rezoning approach, the physical solution
is first interpolated from the old mesh to the new one and then the physical PDE is discretized on
the new mesh, with the new mesh being considered fixed for the current time step. Interpolation of
the physical solution is crucial to the success of this approach. A conservative interpolation scheme
which preserves some quantities of the solution is often necessary.

In the rezoning approach, the physical PDE and the meshing process are naturally decoupled.
On the other hand, they form a coupled system in the quasi-Lagrange approach. Solving the system
can be done either simultaneously or alternately. Simultaneous solution has the advantage that
the method of lines approach (MOL) and many well developed ODE solvers and computer codes
can be used for integrating the system. On the other hand, alternating solution decouples the

61
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process of solving the physical PDE from the meshing process. Structures in each of the physical
PDE and the mesh PDE can be fully explored and this often result in a significant improvement in
efficiency. Moreover, with alternating solution the mesh generation part can be coded as a module
and used with many existing PDE solvers. It should be pointed out, however, that the mesh is
often generated based on the solution information at a previous time step in an alternating solution
procedure. The lag in time would require use of a smaller time step size in the integration of the
system. Another drawback is that the solution procedure has the risk of causing instability in the
integration because it does not have a mechanism built in to force the system back to the track
once the mesh is incorrectly generated at one time step. Comparably this risk is smaller with the
simultaneous solution method because the physical solution and the mesh are forced to satisfy the
physical PDE and the mesh equation simultaneously.

Moving mesh methods can be classified according to the mesh movement strategy into two
groups [26], velocity-based methods and location-based ones. The first group is referred to as the
velocity based method since it targets directly the mesh velocity and obtains mesh point locations
by integrating the velocity field. Methods in this group are more or less motivated by the Lagrange
method in fluid dynamics where the mesh coordinates, defined to follow fluid particles, are obtained
by integrating flow velocity. A major effort in the development of these methods has been to avoid
mesh tangling, an undesired property of the Lagrange method. This type of method includes those
developed in [123, 90, 89, 111, 96, 84, 25]. The method of Yanenko et al. [123] is of Lagrange-
type. Anderson and Rai [111] move the mesh based on attraction and repulsion pseudo-forces
between nodes motivated by a spring model in mechanics. The moving finite element method
(MFE) of Miller [90, 89] has aroused considerable interest. It computes the solution and the mesh
simultaneously by minimizing the residual of the PDEs written in a finite element form. Penalty
terms are added to avoid possible singularities in the mesh movement equations; see [28, 29]. A
way of treating the singularities but without using penalty functions has been proposed by Wathen
and Baines [118]. Liao and Anderson [84] and Cai et al. [23] use a deformation map. Cao, Huang,
and Russell [25] develops the GCL method based on the Geometric Conservation Law (see Chapter
10). The similar idea has been used by Baines et al. [119, 10] for fluid flow problems.

The second group of moving mesh methods is referred to as the location based method be-
cause it controls directly the location of mesh points. Methods in this group typically employ an
adaptation functional (cf. Chapter 8) and determines the mesh or the coordinate transformation
as a minimizer of the functional. For example, the method of Dorfi and Drury [44] can be linked
to a functional associated with equidistribution principle [64]. The moving mesh PDE (MMPDE)
method developed in [64, 63, 66, 67, 24] moves the mesh through the gradient flow equation of
an adaptation functional which includes the energy of a harmonic mapping [45] as a special ex-
ample. A combination of the MMPDE method with local refinement is studied in [81]. Tang et
al. [82, 83, 109] also use the energy of a harmonic mapping as their adaptation functional, but
discretize the physical PDE in the rezoning approach.

So far a number of moving mesh methods and a variety of variants have been developed and
successfully applied to practical problems; see review articles [115, 112, 47, 48, 56, 116, 26] and
books [114, 72, 9, 124, 27, 85]. Particularly, Hawken, Gottlieb, and Hansen [56] give an extensive
overview and references on moving mesh methods before 1990. In addition to the references cited
above, we would also like to bring the reader’s attention to the recent interesting work [21, 11, 107,
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117, 13, 32, 87, 109, 125, 40, 69] on moving mesh methods and their applications.

9.2 The MMPDE method

A distinct feature of the MMPDE method is that it employs a parabolic-type PDE (called a moving
mesh PDE or MMPDE) to move the mesh nodes around so that they adapt to the evolutionary
feature of the physical solution. Such an MMPDE is defined as the gradient flow equation of an
adaption functional. (The functional (8.9) is used in this chapter.) In the MMPDE method, the
physical PDE is discretized using the quasi-Lagrange approach. The coupled system of the physical
PDE and the mesh PDE is typically solved simultaneously in one dimension but alternately in higher
dimensions for better efficiency.

9.2.1 MMPDE for mesh movement

The MMPDE is defined as the gradient flow equation of I[ξ] given in (8.9) with the monitor function
M defined in Chapter 6, i.e.,

∂ξ

∂t
= − 1

τp(x, t)
δI

δξ
, (9.1)

where p = p(x, t) is a balancing factor, τ > 0 is a parameter specified by the user for adjusting
the time scale of mesh movement, and δI

δξ is the functional derivative of I with respect to the
unknown function ξ. It is not difficult to show that δI

δξ is proportional to the left-hand-side term
of the Euler-Lagrange equation (8.11). By interchanging the roles of dependent and independent
variables, equation (9.1) can be transformed to

τp(x, t)
∂x

∂t
= θ

∑
ij

(
(ai)T M̄−1aj

) ∂2x

∂ξi∂ξj
−
∑

i

(ai)T
∑

j

∂(M̄−1)
∂ξj

aj

 ∂x

∂ξi


+

θ(nγ − 2)
2β

2
∑
ij

(
(M̄−1ai)(M̄−1aj)T

∑
k

ak(ak)T

)
∂2x

∂ξi∂ξj

−
∑

i

∑
j

(
(ai)T M̄−1aj

∑
k

(ak)T ∂(M̄−1)
∂ξj

ak

) ∂x

∂ξi


+

(1− 2θ)2(γ − 1)n
nγ
2 ρ

nβ
nγ
2
−1(Jρ)γ

∑
ij

(
ai(aj)T

) ∂2x

∂ξi∂ξj
+
∑

i

(
1
ρ

∂ρ

∂ξi

)
∂x

∂ξi

 . (9.2)

It can be written into

∂x

∂t
=

1
τp(x, t)

∑
i,j

Ci,j
∂2x

∂ξi∂ξj
+
∑

i

bi
∂x

∂ξi

 , (9.3)

where Ci,j ’s are n×n matrices and bi’s are scalar. It is recommended in [58] to choose the balancing
factor as

p(x, t) =

(∑
i

(
(ai)T M̄−1ai

)2
+
∑

i

b2i

)1/2

.
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But it is unclear what the optimal value for τ is. Experience shows that choosing τ in the range
[10−3, 0.1] works for most of problems.

When the computational domain Ωc has a simple geometry and a tensor-product type mesh is
chosen thereon, the spatial discretization of the MMPDE (9.3) via finite differences is straightfor-
ward [65, 67]. However, when Ωc has a simplex geometry, finite elements can be used for (9.3); see
[24]. For time integration, low accuracy schemes can be used. For example, the backward Euler
method has been used in [65, 67], with the coefficients Ci,j and bi calculated at the previous time
step. The linear algebraic system resulting from the semi-implicit discretization has been solved
using a preconditioned conjugate residual method. The preconditioner is constructed as an ILU
preconditioner using level-1 fill-ins.

One may notice that the monitor function M in Chapter 6 involves the derivatives of the
solution of the physical PDE. As in Chapters 7 and 8, these derivatives can be computed using
a gradient recovery technique, such as those in [126, 127, 128], based on approximations of the
nodal values of the physical solution at the previous time step. Since the so recovered derivatives
are often non-smooth, to obtain a smoother mesh and also make the MMPDE easier to integrate,
it is common practice in moving mesh methods to smooth the computed monitor function. For
example, the following averaging scheme can be applied several times to the monitor function,

Mj,k,l ←

∑j+1

ĵ=j−1

∑k+1

k̂=k−1

∑l+1

l̂=l−1
2−|j−ĵ|−|k−k̂|−|l−l̂|Mĵ,k̂,l̂∑j+1

ĵ=j−1

∑k+1

k̂=k−1

∑l+1

l̂=l−1
2−|j−ĵ|−|k−k̂|−|l−l̂|

.

The MMPDE has to be completed with boundary conditions. The most straightforward way is
to fix the boundary points. They can also be moved using a lower dimensioanl MMPDE with the
corresponding monitor function being projecting to faces or lines.

9.2.2 Discretization on a moving mesh

Consider the PDE in the general form

vt = F (t, x, v), ∀x ∈ Ω (9.4)

where F is a differential operator. We are concerned with the quasi-Lagrange approach of the
spatial discretization on a moving mesh.

PDE (9.4) can be discretized via finite differences or finite elements by first transforming from
the physical domain to the computational domain. Indeed, let v̂(ξ, t) = v(x(ξ, t), t). Differentiating
this with respect to t while keeping ξ fixed gives

∂v̂

∂t
=
∂v

∂t
+∇v · ∂x

∂t
=
∂v

∂t
+∇ξ v̂ ·

(
∂ξ

∂x

∂x

∂t

)
, (9.5)

where ∂ξ
∂x is the Jacobian matrix of ξ = ξ(x, t) and ∇ and ∇ξ denote the gradient operators with

respect to x and ξ, respectively. Note that ∂v̂
∂t is the time derivative along the mesh trajectories

and the convective term ∇ξ v̂ ·
(

∂ξ
∂x

∂x
∂t

)
reflects the mesh movement. With relation (9.5), PDE (9.4)

can be written as

∂v̂

∂t
−∇ξ v̂ ·

(
∂ξ

∂x

∂x

∂t

)
= F (t, x(ξ, t), v̂(ξ, t)), ξ ∈ Ωc. (9.6)
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The finite difference or finite element discretization for (9.6) on the computational domain is stan-
dard. The resulting ODE system can be integrated by any time marching scheme.

PDE (9.4) can also be discretized directly on a moving mesh using finite elements. Let {Th(t)} be
an affine family of moving meshes. Consider a discretization with an affine family of finite elements
of an arbitrary order k ≥ 0. By definition (for the affine family of finite elements) any finite element
(K(t), PK ,ΣK) is affine-equivalent to the master finite element (K̂, PK̂ ,ΣK̂). Consequently, for any
basis function φi whose support contains K(t) there exists a basis function φ̂î ∈ PK̂ such that

φi(x, t) = φ̂î(F
−1
K (x, t)), ∀x ∈ K(t) (9.7)

where ξ = F−1
K (x, t) denotes the inverse of affine mapping x = FK(ξ, t) : K̂ → K(t). Differentiating

(9.7) with respect to t while keeping x fixed, we have

∂φi

∂t
= ∇ξφ̂î ·

∂F−1
K

∂t
. (9.8)

By differentiating the equality ξ = F−1
K (FK(ξ, t), t) with respect to t we have

0 =
∂F−1

K

∂t
+
∂F−1

K

∂x

∂FK

∂t
. (9.9)

Combining (9.8) with (9.9) gives rise to

∂φi

∂t
= −∇ξφ̂î ·

∂F−1
K

∂x

∂FK

∂t

= −

(
∂F−1

K

∂x

)T

∇ξφ̂î ·
∂FK

∂t

= −∇φ̂î ·
∂FK

∂t
,

where we have used ∇ =
(

∂F−1
K

∂x

)T

∇ξ. From (9.7) it follows

∂φi

∂t
= −∇φi ·

∂FK

∂t
. (9.10)

We now proceed with the direct finite element discretization. Since Dirichlet boundary condi-
tions can be incorporated by modifying the final algebraic equations, without loss of generality we
assume here that only Neumann boundary conditions are present. More specifically, we assume
that PDE (9.4), supplemented with boundary conditions, has the weak form∫

Ω
vtφdx = F(t, v, φ) (9.11)

where F is a functional resulting from the right-hand side term of (9.4) and φ is an admissible test
function. Approximate v by

vh =
∑

i

vi(t)φi(x, t). (9.12)
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Differentiating it with respect to t and using (9.8) we have

vh
t =

∑
i

dvi

dt
(t)φi(x, t) +

∑
i

vi(t)
∂φi

∂t
(x, t)

=
∑

i

dvi

dt
(t)φi(x, t)−

∑
i

vi(t)∇φi(x, t) ·
∂FK

∂t

=
∑

i

dvi

dt
(t)φi(x, t)−∇vh · Ẋ(x, t), (9.13)

where Ẋ(x, t) denotes a linear polynomial interpolating mesh speed at the vertices and satisfies

Ẋ(x, t) =
∂FK

∂t
(F−1

K (x, t), t), ∀x ∈ K and ∀K ∈ Th.

It is interesting to point out that (9.13) is a finite element analog of the continuous relation (9.5).
Inserting (9.12) and (9.13) into (9.9) and taking φ to be each (say φk) of the basis functions,

we obtain the ODE system∫
Ω

(∑
i

dvi

dt
(t)φi(x, t)−∇vh · Ẋ(x, t)

)
φkdx = F(t, vh, φk), (9.14)

which can be integrated using any time marching scheme.

9.2.3 Alternating solution procedure

In principle, the physical PDE (9.6) (or (9.14)) and the MMPDE (9.3) can be integrated in time
either simultaneously or alternately. However, alternating solution seems more realistic in multi-
dimensions since it voids the highly nonlinear coupling of the mesh and physical solution and
preserves many structures such as ellipticity and sparsity in each of the mesh and physical PDEs.
For illustrative purpose, we give an alternating procedure in the following. Here, ∆t and ∆tmesh

are the time step sizes associated with the physical PDE and the MMPDE, respectively.

Alternating Solution Procedure: Assume that the physical solution vn, the mesh xn,
and a time step size ∆tn are given at time t = tn.

(i) Compute the monitor function Mn(x) = M(tn, x) using vn and xn. The solution derivatives
used in M (cf. Chapter 6) are calculated using a gradient recovery technique based on the
nodal values of the computed solution.

(ii) Integrate the MMPDE (9.3) over the time period [tn, tn+∆tn] using variable step size ∆tmesh,n

and monitor function Mn(x). The MMPDE is discretized in time using the backward Euler
scheme with the coefficients Ci,j and bi being calculated at tn. More than one sub-step may
be used for the integration to reach t = tn + ∆tn. When this happens, the monitor function
is updated for each sub-step via linear interpolation. The obtained mesh is denoted by xn+1.

(iii) Integrate the physical PDE (9.6) with a fixed or variable step size. The equation can be
discretized in time using, say, the Singly Diagonally Implicit Runge-Kutta scheme [30]. The
mesh and mesh velocity are calculated using linear interpolation:

x(t) =
t− tn
∆tn

xn+1 +
tn + ∆tn − t

∆tn
xn. (9.15)
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(iv) When a variable step size is used in step (iii), the physical PDE may actually be integrated over
a smaller step ∆̂tn < ∆tn. In this case, the mesh at the actual new time level tn+1 = tn +∆̂tn
should be updated as xn+1 := x(tn+1) using (9.15).

(v) Go to the next time step with the step size predicted by the physical PDE solver.

9.3 Example examples

Example 9.3.1. The first example is an initial-boundary value problem (IBVP) of the well-known
Burgers equation,

vt = εvxx −
(
v2

2

)
x

, x ∈ (0, 1), t > 0 (9.16)

subject to the boundary conditions

v(0, t) = v(1, t) = 0 (9.17)

and the initial condition
v(x, 0) = sin(2πx) +

1
2

sin(πx). (9.18)

Here ε > 0 is a physical parameter. It is known that, for small ε, the solution of the IBVP starts
with a smooth profile and then develops a steep front, which propagates toward the right end and
eventually dies out due to the homogeneous Dirichlet boundary condition at the right end. The
difficulty in the numerical solution of this model problem lies in the resolution of the sheep front
and its propagation.

Fig. 9.1 shows a computed solution at various time instants and the corresponding mesh
trajectories. This result is obtained with the finite difference method. For mesh movement, τ =
10−2 and the monitor function is chosen for the case (l,m) = (2, 1). For comparison, the computed
solution with a uniform mesh of 2001 nodes is shown in Fig. 9.2.

(a): Computed solution.
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(b): Mesh trajectories.
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Figure 9.1: Example 9.3.1. (a): Computed solutions at t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 obtained
with an adaptive moving mesh of 41 points for Burgers’ equation with ε = 10−4. (b): The mesh
trajectories.
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Figure 9.2: Example 9.3.1. Computed solutions at t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 obtained with a
uniform mesh of 2001 points for Burgers’ equation with ε = 10−4.

Example 9.3.2. The second example is the two dimensional Burgers equation

∂v

∂t
= 0.005∆v − v ∂v

∂x
− v∂v

∂y
, t ∈ (0.25, 1.5], x ∈ Ω ≡ (0, 1)× (0, 1). (9.19)

The initial and Dirichlet boundary conditions are chosen so that the problem has exact solution
v(x, y, t) = (1+e100(x+y−t))−1. This solution describes a straight-line wave (v is constant along line
x+ y = c) moving in the direction θ = 45o.

Adaptive moving meshes and solution error obtained with a MMPDE finite difference method
are shown in Figs. 9.3 and 9.4.

Example 9.3.3. The third example is a model of multiphase flow and transport in groundwa-
ter environment [69]. It simulates the dissolution of nonaqueous phase liquids (NAPLs) into the
aqueous phase [88]. The physical process is described by two PDEs, one for the volumetric fraction
of NAPL or NAPL content,

∂θn

∂t
= −kna (C∗

a − Ca)
ρn

, (9.20)

and the other for the NAPL dissolved in water,

∂(θaCa)
∂t

= ∇ · (D∇Ca − qaCa) + kna (C∗
a − Ca), (9.21)

where the subscripts “a” and “n” represent the aqueous and nonaqueous phases, respectively, the
superscript “∗” indicates an equilibrium condition with the companion phase involved in the mass
transfer, θ = θ(t, x, y) is the volumetric fraction, Ca = Ca(t, x, y) is the concentration of the NAPL
dissolved in water, ρ is density, kna is a mass transfer coefficient representing a mass transfer process
referenced to a loss by the nonaqueous phase and a gain by the aqueous phase, qa is water flux,
and D is the dispersivity. It is noted that θn + θa = n, where n is the porosity considered to be
constant here. The reader is referred to [88] for the derivations of the governing equations, the
corresponding initial and boundary conditions and the physical parameters. The physical scenario
is that the aqueous phase is being flushed from the left boundary and the dissolved NAPL is being
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Figure 9.3: Example 9.3.2. A typical moving mesh at time instants (a) t = 0.26, (b) t = 0.5, (c)
t = 0.98, and t = 1.46.

eluted from the right boundary. The left and right boundary conditions are a specified flux for the
aqueous phase, while the top and bottom boundary conditions are no-flow. The initial residual
NAPL saturation and other parameters are homogeneous, a typical laboratory condition, except
that a perturbation in the residual NAPL saturation near the left boundary where a portion of
the boundary is NAPL free, indicating that a clean water is flushing in. The development of this
perturbation into a dissolution profile is then observed.

The obtained results are shown in Fig. 9.5 for mesh evolution, NAPL, and dissolved NAPL
in water. It can be observed that a clean inflow from the west boundary washes out NAPL and
reduces dissolved NAPL in water in a channel zone with time. The movements of the front and
the boundary of the channel are captured correctly with the adaptive mesh.

Example 9.3.4. Our next example is a combustion problem considered in [67, 92]. The
mathematical model is a system of coupled nonlinear reaction-diffusion equations

∂u

∂t
−∇2u = − R

αδ
ueδ(1−1/T ),

∂T

∂t
− 1
Le
∇2T =

R

δLe
ueδ(1−1/T ), (9.22)

where u and T represent the dimensionless concentration and temperature of a chemical which is
undertaking a one-step reaction. We consider the J-shape solution domain shown in Fig. 9.6. The
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Figure 9.4: Example 9.3.2. The global L2 error e(t) =
t∫
0

‖u− ucompt‖2dt is plotted as function of t

for three meshes.

initial and boundary conditions are

u|t=0 = T |t=0 = 1, in Ω,
u|∂Ω = T |∂Ω = 1, for t > 0

(9.23)

and the physical parameters are set to be Le = 0.9, α = 1, δ = 20, and R = 5. A result obtained
with a MMPDE finite element method [24] is shown in Fig. 9.6.



9.3. EXAMPLE EXAMPLES 71

# time = 1.300000e-01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

-0.000200.00020.00040.00060.00080.0010.00120.0014

# time = 4.900000e-01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

-0.000200.00020.00040.00060.00080.0010.00120.0014

# time = 9.700000e-01

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

-0.000200.00020.00040.00060.00080.0010.00120.0014

# time = 1.300000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

-0.0002
0

0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

# time = 4.900000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

-0.0002
0

0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

# time = 9.700000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

-0.0002
0

0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

# time = 1.300000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.071988

0.07199

0.071992

0.071994

0.071996

0.071998

0.072

0.072002

# time = 4.900000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.071955
0.07196

0.071965
0.07197

0.071975
0.07198

0.071985
0.07199

0.071995
0.072

0.072005

# time = 9.700000e-01

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.07191
0.07192
0.07193
0.07194
0.07195
0.07196
0.07197
0.07198
0.07199

0.072
0.07201

Figure 9.5: Example 9.3.3. Adaptive moving mesh (first row), NAPL (second row), and dissolved
NAPL in water (third row) for the NAPL problem.
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(a.2)  T(t=1.1867) (b.2)  Mesh(t=1.1867)

(a.5)  T(t=1.2275) (b.5)  Mesh(t=1.2275)

(a.6)  T(t=1.2321) (b.6)  Mesh(t=1.2321)

Figure 9.6: Example 9.3.4. The contour plot of the temperature T (where white represents 2.2 and
black represents 1) and the moving mesh are shown at various times.



Chapter 10

Adaptive moving mesh methods:

GCL approach

10.1 Introduction

This chapter is devoted to the description of the GCL method – a velocity-based moving mesh
method. The method was developed in [25] based on the Geometric Conservation Law [110], and
includes the Lagrange method in computational fluid dynamics and the deformation map method
developed by Liao and coworkers [84, 102, 15, 23] as special examples. The GCL method shares
many common properties with the Lagrange method, including advantages and disadvantages. The
method has not attracted much attention as location-based methods. But it has shown promises
for a certain class of problems in the recent work by Baines and his coworkers [10, 119].

10.2 GCL method

The original development of the GCL method [25] was based on the Geometric Conservation Law
[110]. The method is derived here in a slightly different way, partially motivated by work of Baines
et al. [10, 119].

The focus is on the equidistribution condition (2.4),

Jρ =
σ

|Ωc|
, (10.1)

where J is the Jacobian of the coordinate transformation x = x(ξ) : Ωc → Ω, ρ = ρ(x, t) is a
given adaptation function, and σ = σ(t) =

∫
Ω ρ(x, t)dx. Let K(t) be an arbitrary, time dependent

sub-domain of Ω and Kc be the corresponding fixed sub-domain in Ωc under x = x(ξ). Integrating
(10.1) over Kc yields ∫

K(t)

ρ

σ
dx =

|Kc|
|Ωc|

. (10.2)

Differentiating this with respect to time, we have

d

dt

∫
K(t)

ρ

σ
dx = 0

73
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or ∫
K(t)

∂

∂t

(ρ
σ

)
dx+

∫
∂K(t)

ρ

σ
ẋ · ndS = 0, (10.3)

where the mesh speed ẋ characterizes the movement of surface ∂K(t) and n is the outward normal
to the surface. Using Gauss’ theorem, (10.3) can be written as∫

K(t)

∂

∂t

(ρ
σ

)
dx+

∫
K(t)
∇ ·
(ρ
σ
ẋ
)
dx = 0.

It follows from the arbitrariness of K(t) that

∂

∂t

(ρ
σ

)
+∇ ·

(ρ
σ
ẋ
)

= 0. (10.4)

This is basically the continuity equation in fluid dynamics, with “flow velocity” ẋ and “fluid density”
ρ/σ. It can also be considered as a condition for determining the divergence of mesh speed ẋ. Thus,
the equidistribution condition (10.1) determines the divergence of ẋ.

Note that equation (10.4) is insufficient to determine the vector field ẋ. The motivation for
finding supplementary conditions is provided by the Helmholtz decomposition theorem for vectors:
A continuous and differentiable vector field can be decomposed into the orthogonal sum of a gradient
of a scalar field and the curl of a vector field. Therefore, ẋ can be determined by specifying both
its divergence through (10.4) and its curl. We require ẋ to satisfy

∇× w(ẋ− vref ) = 0, (10.5)

where w > 0 is a weight function and vref is a user-specified reference vector field. Different choices
for w and vref lead to different curl conditions for the vector field ẋ. Their choices will be discussed
in §10.4.

The requirement (10.5) implies that there exists a potential function φ such that

w(ẋ− vref ) = ∇φ

or
ẋ =

1
w
∇φ+ vref . (10.6)

Inserting this into (10.4) leads to

∇ ·
( ρ

wσ
∇φ
)

= − ∂

∂t

(ρ
σ

)
−∇ ·

(ρ
σ
vref

)
in Ω. (10.7)

The boundary condition can be obtained by requiring the mesh points not to move out the domain,
i.e., ẋ · n = 0 where n denotes the outward normal to ∂Ω. Using (10.6), we have the boundary
condition

∂φ

∂n
= −w vref · n on ∂Ω. (10.8)

To summarize, the potential function φ is determined by the elliptic equation (10.7) supple-
mented with the Neumann boundary condition (10.8). Once φ is known, the mesh location can be
obtained by integrating (10.6).
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10.3 Relation to the Lagrange method and the deformation map

method

The GCL method described in the previous section can be regarded as a generalization of the
Lagrange method when choosing the reference vector field vref to be the flow velocity vf . Consider
a special case where incompressible fluid does not flow in or out of the domain, meaning that
∇ · vf = 0 in Ω and vf · n = 0 on ∂Ω. Taking ρ = constant (no adaption), we have φ = constant
from (10.7) and a pure Lagrange method ẋ = vf results from (10.6).

We now discuss the relation of the GCL method with the deformation map method. The
deformation map was introduced by Moser [36, 93] in his study of volume elements of a compact
Riemannian manifold to prove the existence of a C1 diffeomorphism with a specified Jacobian. It
has been adopted by Liao and coworkers [84, 102, 15, 23] for generating adaptive moving meshes.
The method can be rewritten in the current notation as

∇ ·
(ρ
σ
ẋ
)

= − ∂

∂t

(ρ
σ

)
,

∇×
(ρ
σ
ẋ
)

= 0. (10.9)

It is easy to see that the deformation map method is a special case of the GCL method with
w = ρ/σ and vref = 0.

Note that both the deformation map method and the GCL method control the Jacobian J of
the mapping in the same way, so the cell sizes produced by the two methods are the same. However,
the extra freedom given by vref and w in the GCL method can be used to provide better control
of the mesh behavior; cf. Figs. 10.1 and 10.2. For instance, in practical computation it is generally
preferable to have an irrotational mesh velocity ẋ, which can result in less skewed grids. This can
be achieved with the GCL method by choosing w = 1. But, on the other hand, an irrotational
mesh velocity field is generally impossible with the deformation method, since

∇×
(ρ
σ
ẋ
)

= 0

implies

∇× ẋ = −1
ρ
∇ρ× ẋ,

and therefore ∇× ẋ does not vanish in general.
Like the GCL method, the deformation map method satisfies the relation (10.1) for any di-

mension. Thus, the Jacobian of the mapping stays positive, and the mapping itself is locally non-
singular. This is a very advantageous feature of the deformation method (and the GCL method)
since for most methods it is extremely difficult to prove that they produce non-singular coordinate
transformations or meshes.

10.4 Choice of w, vref , and ρ

As mentioned in the previous section, there are two more or less obvious choices for the weight
function, w = ρ/σ and w = 1. The former corresponds to the deformation map method and
generally does not result in an irrotational mesh velocity field. The latter results in an irrotational
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mesh velocity field when vref = 0. Of course, numerous other options are also possible, but their
mathematical and/or physical significance is unclear so far.

The choice of the control vector field vref is very problem dependent. For fluid dynamics
problems, a good choice of it can be the flow velocity, since this is likely to reduce the magnitude
of the convection term. However, when mesh adaption is allowed (i.e., ρ is not constant), grid
movement due to the mesh adaption may increase the convection term and make vref more difficult
to choose. Generally speaking, when physical intuition for choosing vref is not available, the best
option is simply to choose vref = 0.

The choice of the adaptation function ρ should generally be based on the equidistribution
principle (2.4) or (10.1). Consequently, it is natural to define it as the square-root of the determinant
of the monitor function given in Chapter 6, i.e.,

ρ =
√

det(M).

It can also be chosen based on other considerations, such as the scaling invariance argument used
in [10].

10.5 Numerical examples

Example 10.5.1. The first example is to generate a moving mesh for the given adaptation function

ρ(x, y, t) =


1 + 100(t+ 0.1) exp(−50|(x− 1

2)2 + (y − 1
2)2 − 0.09|)

for − 0.1 < t < 0,
1 + 10 exp(−50|(x− 1

2 − t)
2 + (y − 1

2)2 − 0.09|)
for t ≥ 0.

(10.10)

This function is defined using two time phases, one from t = −0.1 to t = 0 and the other for t > 0.
The purpose of the first phase is to produce an adaptive mesh for t = 0, starting from a uniform
mesh at t = −0.1. For t > 0, the function simulates a circular peak which moves right at speed
1 and eventually leaves the domain while maintaining its shape. Numerical results are shown in
Figs. 10.1 and 10.2.

Example 10.5.2. This example is to generate a moving mesh for the adaptation function

ρ(x, y, t) =


1 + 50(0.1 + t) exp(−50|(x− 3

4)2 + (y − 1
2)2 − .01|),

for − 0.1 < t < 0
1 + 5 exp(−50|(x− 1

2 −
1
4 cos(2πt))2 + (y − 1

2 −
1
4 sin(2πt))2 − .01|),

for t ≥ 0.

(10.11)

For this monitor function, the largest values of ρ occur around a small circle which rotates about
the point (1

2 ,
1
2).

This is a very difficult test problem for many moving mesh methods, especially for ones with
close similarity to the Lagrange method. With these methods, as the mesh points and concentration
follow the small moving circle rotating around the point (1

2 ,
1
2), if some of the boundary mesh points

stay fixed (as in the current case where the four corner points are fixed), then the mesh becomes
more and more skewed and eventually singular. Unfortunately, the present moving mesh based on
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the GCL also suffers from this difficulty. Although the GCL condition guarantees non-singularity
of the Jacobian of the coordinate transformation in the continuous case, it does not prevent the
mesh from becoming increasingly skew. Meanwhile, the points of a highly skewed mesh can easily
tangle each other numerically. This is illustrated in Fig.10.3.

Example 10.5.3. This example illustrates the effect of the reference vector field vref on the
moving mesh. As discussed in §10.3, the GCL method reduces to a pure Lagrange method when
ρ = constant and vref is divergence free inside the domain and satisfies vref ·n = 0 on the boundary.
A special example is where the mesh velocity is given by the angular direction vref for a unit disk
Ω. However, the mesh movement is not so obvious if vref · n is not zero on the boundary and/or
some of the boundary mesh points such as corner points stay fixed. To see this, consider the case
where w = 1, ρ = 1, and

vref = 2π(−y +
1
2
, x− 1

2
). (10.12)

The reference vector field is a divergence free rotation around the center of the domain, with angular
speed 1. In Fig. 10.4 the moving mesh is shown at times t = 0, 0.1, 0.2. Away from the boundary,
the influence of the boundary condition is small and the mesh points move at a speed close to
vref . However, near the boundary, and especially on it, the boundary condition has a much more
significant effect, and as a consequence, the mesh points accumulate around the corners (where the
corner points are fixed). The mesh stops moving at around t = 0.2 because too many points have
accumulated near the corners.
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Figure 10.1: Example 10.5.1. A moving mesh at t = 0, 0.25, 0.5, 0.75 is obtained by the GCL
method with w = 1.
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Figure 10.2: Example 10.5.1. A moving mesh at t = 0, 0.25, 0.5, 0.75 is obtained by the GCL
method with w = ρ/σ.
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Figure 10.3: Example 10.5.2. A moving mesh at t = 0, 0.5, 0.75, 1 is obtained by the GCL method
with w = 1.
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Figure 10.4: Example 10.5.3. A moving mesh at t = 0.05, 0.1 is obtained by the GCL method with
w = 1.
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Chapter 11

Conclusions and comments

Mesh adaptation has become an indispensable tool for use in the numerical solution of partial
differential equations. A proper use of mesh adaptation can often significantly improve the efficiency
of numerical simulation and enhance computational resolution. To take a full benefit from mesh
adaptation, not only the size but also the shape and orientation of mesh elements should be allowed
to change to adapt to the behavior of the physical solution. This is especially true when the solution
of the problem under consideration exhibits an anisotropic feature that it changes more significantly
in one direction than the others.

Mesh adaptation lies in the ability to control the size, shape, and orientation of mesh elements
throughout the physical domain. As shown in Chapter 2, this can be done in two steps. The first
step is to define a monitor function or a metric tensor which specifies the element size, shape, and
orientation on the physical domain. The second is to develop an algorithm to generate a mesh that
satisfies the alignment and equdistribution conditions (2.3) and (2.4) (or (2.10) and (2.11) in the
terminology of finite elements) for the monitor function defined in the first step.

The monitor function has been defined in Chapter 6 based on isotropic and anisotropic estimates
for interpolation error and using mesh quality measures developed in Chapter 6. The metric tensor
used for unstructured mesh generation has been defined in Chapter 7.

On the practical side, anisotropic unstructured meshes can be generated as isotropic ones in
the metric specified by a metric tensor. The feasibility of this approach as well as the advantages
of using an anisotropic mesh have been demonstrated in Chapter 7.

A variational adaption method has been studied in Chapter 8 based on the alignment and equd-
istribution conditions (2.3) and (2.4). Two moving mesh methods have been discussed in Chapters
9 and 10. They are also based on these conditions but utilize very different meshing strategies.
The MMPDE method employs an adaptation functional to define the coordinate transformation
needed for mesh generation, and is location-based. On the other hand, the GCL method, for which
the equidistribution condition (2.4) is satisfied exactly, is a generalization of the Lagrange method
in computational fluid dynamics and targets the mesh speed directly.
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