
A MOVING MESH METHOD BASED ON THE
GEOMETRIC CONSERVATION LAW∗

WEIMING CAO† , WEIZHANG HUANG‡ , AND ROBERT D. RUSSELL§

SIAM J. SCI. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 118–142

Abstract. A new adaptive mesh movement strategy is presented, which, unlike many existing
moving mesh methods, targets the mesh velocities rather than the mesh coordinates. The mesh
velocities are determined in a least squares framework by using the geometric conservation law,
specifying a form for the Jacobian determinant of the coordinate transformation defining the mesh,
and employing a curl condition. By relating the Jacobian to a monitor function, one is able to
directly control the mesh concentration. The geometric conservation law, an identity satisfied by any
nonsingular coordinate transformation, is an important tool which has been used for many years in
the engineering community to develop cell-volume-preserving finite-volume schemes. It is used here
to transform the algebraic expression specifying the Jacobian into an equivalent differential relation
which is the key formula for the new mesh movement strategy. It is shown that the resulting method
bears a close relation with the Lagrangian method. Advantages of the new approach include the
ease of controlling the cell volumes (and therefore mesh adaption) and a theoretical guarantee for
existence and nonsingularity of the coordinate transformation. It is shown that the method may
suffer from the mesh skewness, a consequence resulting from its close relation with the Lagrangian
method. Numerical results are presented to demonstrate various features of the new method.

Key words. moving mesh method, geometric conservation law, mesh adaption, mesh movement

AMS subject classifications. 65M50, 65M60

PII. S1064827501384925

1. Introduction. The critical importance of mesh adaption in the numerical
solution of partial differential equations (PDEs) has been amply demonstrated in the
past. One of the most promising directions in the field of adaptivity is the development
of reliable moving mesh strategies. In other work [13, 14, 15], we have investigated a
class of so-called moving mesh PDE (MMPDE) methods, whereby the mesh movement
is driven by an MMPDE which is solved in conjunction with the direct physical
PDE. Since the MMPDE is formulated as the gradient flow equation of a quadratic
functional and is parabolic, the mesh locations are more or less globally distributed,
and consequently, the mesh smoothness and skewness can be well controlled.

Another class of moving mesh methods which have generated considerable interest
of late bear close relation to the Lagrangian method. For them, the PDE to solve
for the mesh velocity arises either from minimizing a functional involving the mesh
velocity or from physical considerations. While it is not always clear how a mesh which
drifts away from the desired one will be corrected at a later time for such methods,
numerical results clearly demonstrate that they can be quite successful. Examples of
methods in this class include the moving finite element (MFE) method of Miller and
Miller [21, 22], the deformation map method advocated by Liao and Anderson [18]

∗Received by the editors February 12, 2001; accepted for publication (in revised form) June
20, 2001; published electronically May 20, 2002. This work was supported in part by the Faculty
Research Award of the University of Texas at San Antonio under account 14-7510-01, NSF (USA)
grant DMS-0074240, and NSERC (Canada) grant OGP-0008781.

http://www.siam.org/journals/sisc/24-1/38492.html
†Division of Mathematics and Statistics, University of Texas at San Antonio, San Antonio, TX

78249 (wcao@math.utsa.edu).
‡Department of Mathematics, University of Kansas, Lawrence, KS 66045 (huang@math.ukans.

edu).
§Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada (rdr@cs.

sfu.ca).

118

A MOVING MESH METHOD BASED ON GCL 119

and Semper and Liao [23], and the arbitrary Lagrangian–Eulerian (ALE) method first
proposed by Hirt, Amsden, and Cook for the solution of fluid dynamic problems [11].

The objective of this paper is to introduce a new moving mesh method which is
in the spirit of this second class of methods. It is based upon the specification for
the Jacobian of the coordinate transformation for mesh adaption and a use of the so-
called geometric conservation law (GCL) and a curl condition. To be specific, consider
the problem of adaptive mesh selection which arises in the context of solving a time-
dependent PDE over a physical domain Ω ⊂ �n, n = 1, 2, or 3. To this end, a time-
dependent coordinate transformation x = x(ξ, t) from the computational domain Ωc

to the physical domain Ω is required, and adaptive meshes are generated as images
of a reference grid in Ωc under the transformation. A simple and straightforward
approach for determining the mesh transformation x(ξ, t) is to specify its Jacobian J
(the determinant of (∂x)/(∂ξ)). This idea for mesh adaption has been used by many
researchers, e.g., see [3, 6, 16, 17, 18]. While specifying the Jacobian is appealing in
a number of aspects, the differential equations obtained directly are not necessarily
easy to solve, nor is mesh nonsingularity guaranteed [6].

The GCL is a tool which has been used for many years in the engineering com-
munity to develop cell-volume-preserving finite-volume schemes. For example, Trulio
and Trigger [25] use the GCL, or “space conservation law,” to eliminate numerical
oscillations and preserve physical conservation laws for solutions on moving meshes.
Thomas and Lombard [24] rediscover the GCL. Writing the physical PDEs in conser-
vative form, they update the Jacobian at a new time based on the GCL, and accurate
results are obtained for implicit finite-difference and finite-volume solution of unsteady
Navier–Stokes equations and steady supersonic flow equations. Interestingly, instead
of updating the cell volume at a new time level, Demirdžić and Perić [8, 9] modify the
mesh speeds using the GCL in their finite-volume simulation of fluid flow problems
with moving boundaries.

Here, we combine using the GCL, specifying the Jacobian of x(ξ, t), and using a
curl condition on x(ξ, t) to produce an adaptive mesh movement strategy. More pre-
cisely, we first choose the Jacobian as a function (referred to as the monitor function)
which involves the physical solution. We then specify the divergence of the mesh
velocity using the GCL. Finally, the mesh velocity field is uniquely determined by
further imposing a condition on its curl. Thus, our approach is to combine the ideas
of adapting the mesh by specifying the Jacobian and controlling the mesh speed using
the GCL and a curl condition. The theoretical underpinning of the approach is the
Helmholtz theorem, which states that a smooth vector field can be decomposed into
an orthogonal sum of divergence and curl terms.

The method which we develop is closely related to the deformation map method
used by Liao and coworkers [2, 18, 23], and in fact one particular case is precisely
that method. However, our approach has some distinct advantages. The motiva-
tion and derivation are very different, and the relation between it and several other
moving mesh methods, including the Lagrangian method, is clearer and more easily
understood. The resulting method is more general and allows for a greater diversity of
implementations. In our limited experience a different implementation than that used
by Liao is found to be more reliable. Fortuitously, the proof of local nonsingularity
of the coordinate transformation follows straightforwardly from the GCL.

An outline of the paper is as follows. In section 2 we give a simple derivation of the
GCL and a description of its general use for mesh adaption. A moving mesh strategy
is then developed in section 3 based on the GCL, and its relation to and comparison

120 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

with some existing methods, including the Lagrangian method, the deformation map
method, Miller’s MFE, and the MMPDE method, are discussed in section 4. Section 5
is devoted to several implementations of the moving mesh strategy. In section 6 we
present some numerical results obtained with these implementations for a selection of
two-dimensional examples. Finally, section 7 contains conclusions and comments.

2. The geometric conservation law and mesh adaption. Let Ac be an
arbitrary, fixed cell in the computational domain Ωc enclosed by a smooth boundary
∂Ac, and let A(t) = {x|x = x(ξ, t) ∀ξ ∈ Ac} be the corresponding cell in the physical
domain Ω under the time-dependent coordinate transformation x = x(ξ, t). Then the
change in volume of A(t) equals the total flux through the surface ∂A(t), i.e.,

d

dt

∫
A(t)

dx =

∫
∂A(t)

xt · dS,(1)

where xt is the mesh velocity. This is the integral form of the GCL [24]. Using the
change of variables defined by the coordinate transformation, the left-hand side of (1)
can be rewritten as

d

dt

∫
A(t)

dx =
d

dt

∫
Ac

J(ξ, t)dξ =

∫
Ac

D

Dt
J(ξ, t)dξ,

where (D)/(Dt) denotes the time derivative in the coordinate system (ξ, t). In the
context of fluid dynamics, (D)/(Dt) is also called the total or material time derivative,
which is related to derivatives with respect to the physical variables (x, t) by

D

Dt
=

∂

∂t
+ xt · ∇,

where ∇ is the gradient operator with respect to x and (∂)/(∂t) is the time derivative
when x is fixed.

From the divergence theorem, the right-hand side of (1) can be written as∫
∂A(t)

xt · dS =

∫
A(t)

∇ · xt dx =

∫
Ac

(∇ · xt)J dξ.

Noting that Ac is arbitrary, we obtain the differential form of the GCL

∇ · xt =
1

J

DJ

Dt
,(2)

which will be instrumental in deriving our moving mesh methods.
A simple and straightforward way to use the Jacobian for mesh adaption is to set

J(ξ, t) =
c(ξ)

ρ(x(ξ, t), t)
,(3)

where ρ = ρ(x, t) > 0 is a user-defined monitor function, the size of which reflects the
local difficulty in approximating the solution of the underlying problem, and c = c(ξ)
is a time-independent function determined by the initial coordinate transformation.
In one dimension (3) is precisely the well-known equidistribution principle [13], so it
can be viewed as a generalization of the principle.

A MOVING MESH METHOD BASED ON GCL 121

A direct use of (3) for mesh adaption appears to be impractical [6] because it
leads to a highly nonlinear, difficult-to-solve system of differential equations. Instead,
we use the GCL to transform the algebraic expression (3) for J into an equivalent
differential relation. Specifically, substituting (3) into (2) gives

∇ · xt = −1

ρ

Dρ

Dt
,

or

ρ∇ · xt = −∂ρ

∂t
− xt · ∇ρ,

and finally,

∇ · (ρxt) +
∂ρ

∂t
= 0.(4)

We note that (4) is mathematically equivalent to (3) since (2) is an identity satisfied
by any nonsingular coordinate transformation.

Their equivalence implies that using (4) we can define the coordinate transforma-
tion and realize mesh adaption using the mesh velocity field. (In this way, we will be
able to formulate a well-posed PDE governing the mesh movement, as we see in the
next section.) Moreover, since the monitor function is always chosen to be strictly
positive, the equivalence guarantees that the coordinate transformation determined
by (4) is locally nonsingular for all t > 0 if and only if it is initially for t = 0.

The computational coordinate does not appear explicitly in (4), so the equation
can be considered as one defined in the physical domain, with xt regarded as a vector
field in Ω. Additional conditions are necessary to guarantee there is a unique solution.

Assuming that the boundary points are not permitted to move out of the domain,
the boundary condition

xt · n = 0 on ∂Ω

holds. Assuming further that the physical domain Ω does not change with time,
applying the divergence theorem to (4) we get the compatibility condition

d

dt

∫
Ω

ρ(x, t)dx = 0.(5)

Equivalently, (5) follows from (3) since∫
Ω

ρ dx =

∫
Ωc

ρJ dξ =

∫
Ωc

c(ξ)dξ

is constant. One can view (5) as a conservation of mass condition, with ρ being a
density function.

3. A moving mesh method based on the GCL. We are now in a position
to derive the moving mesh strategy based on (4). First, for a given ρ(x, t), solving
(4) is insufficient to uniquely determine the mesh velocity because it specifies only
the divergence of the vector field. To see what is lacking, we recall the classical
decomposition theorem of Helmholtz: A continuous and differentiable vector field can
be resolved into the orthogonal sum of gradient of a scalar field (“solenoidal field”)

122 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

and the curl of a vector field (“vortex field”). From this theorem, we conclude that
in addition to determining the divergence of the mesh velocity field through (4), its
curl may also be specified. Therefore, we let

∇× w(v − u) = 0 in Ω,(6)

where w and u are, respectively, a weight function and a background velocity field to
be specified. The choice of these functions will be addressed in section 5. Hereafter,
to avoid confusion we use v to denote the mesh velocity field and xt to denote the
time derivative of the coordinate transformation x = x(ξ, t).

Equation (6) implies that there exists a potential function φ such that

v = u +
1

w
∇φ.(7)

Substituting (7) into (4) and the boundary condition

v · n = 0 on ∂Ω(8)

give rise to an elliptic system for φ,{ ∇ · (ρ
w∇φ

)
= −∂ρ

∂t −∇ · (ρu) in Ω,
∂φ
∂n = −wu · n on ∂Ω.

(9)

Solving for φ(x, t), x = x(ξ, t) can then be determined from x(ξ, 0) by integrating

xt = u(x, t) +
1

w(x, t)
∇φ(x, t).(10)

The mesh velocity field v(x, t) can also be determined using a least squares frame-
work. Defining the least squares functional

I[v] =
1

2

∫
Ω

{∣∣∣∣∇ · (ρv) +
∂ρ

∂t

∣∣∣∣
2

+
(ρ
w

)2

|∇ × w(v − u)|2
}
dx,(11)

a minimization is done over the space of functions satisfying the boundary condition
(8). Once the mesh velocity has been determined, the mesh or coordinate transfor-
mation is defined as a family of trajectories of the vector field

xt(ξ, t) = v(x(ξ, t), t) ξ ∈ Ωc.(12)

The following theorem guarantees that the desired solution can be obtained
through this minimization procedure. It can be proven by utilizing the orthogonality
of the gradient and curl operators in the L2 norm. For completeness and to better
understand the role of (5), we give a detailed proof.

Theorem 3.1. If the compatibility condition (5) is satisfied, then the minimizer
of I[v] in (11) satisfies (4) and (6).

Proof. For notational simplicity, denote

a =
(ρ
w

)2

[∇× w(v − u)], g = ∇ · (ρv) +
∂ρ

∂t
.(13)

Taking variations, for an arbitrary function δv satisfying the boundary condition (8),
i.e., δv · n = 0 on ∂Ω, we have

δI =

∫
Ω

[g∇ · (ρδv) + a · (∇× wδv)] dx.

A MOVING MESH METHOD BASED ON GCL 123

Using the identities

c∇ · d = ∇ · (cd) −∇c · d ∀d ∈ �3,(14)

b · (∇× d) = ∇ · (d× b) + d · (∇× b) ∀b, d ∈ �3(15)

and the divergence theorem, we have

δI =

∫
Ω

{[∇ · (gρδv) − (∇g) · ρδv] + [∇ · (wδv × a) + wδv · (∇× a)]} dx

=

∫
Ω

[−ρ(∇g) · δv + w(∇× a) · δv] dx +

∫
∂Ω

[gρδv · n + w(a× n) · δv] dS.

Thus, setting δI = 0 gives the Euler–Lagrange equation

−ρ∇
[
∇ · (ρv) +

∂ρ

∂t

]
+ w∇×

(ρ
w

)2

[∇× w(v − u)] = 0 in Ω(16)

and the natural boundary condition

{[∇× w(v − u)] × n} · d = 0 on ∂Ω

for all functions d satisfying d ·n = 0 on ∂Ω. Since [∇× w(v − u)]×n is orthogonal
to n, this boundary condition is simply

[∇× w(v − u)] × n = 0 on ∂Ω.(17)

We now show that the Euler–Lagrange equation (16) and boundary condition
(17) imply (4) if the compatibility condition is satisfied for the user-specified function
ρ. Rewriting (16) as √

ρ

w
∇g =

√
w

ρ
∇× a,(18)

multiplying by
√
w/ρ, and applying (∇×) leads to

∇×
(
w

ρ
∇× a

)
= 0.(19)

Integrating the norm squared of both sides of (18) gives∫
Ω

ρ

w
| ∇g |2 dx =

∫
Ω

w

ρ
| ∇ × a |2 dx

=

∫
Ω

w

ρ
(∇× a) · (∇× a)dx

=

∫
Ω

∇ ·
[
w

ρ
a× (∇× a)

]
+ a ·

[
∇×

(
w

ρ
∇× a

)]
dx (using (15))

=

∫
∂Ω

w

ρ
a · [(∇× a) × n] dS (using (19) and div. thm.)

= −
∫
∂Ω

w

ρ
· (a× n) · (∇× a)dS

= 0,

124 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

where we have used (19) and boundary condition (17). Hence, ∇g = 0, so g = c, or

∇ · (ρv) +
∂ρ

∂t
= c.(20)

Integrating over Ω and applying Gauss’s theorem, the compatibility condition (5)
implies c = 0, so (4) follows.

We now show that (6) also follows from the compatibility condition. From (4)
and (16),

∇×
(ρ
w

)2

[∇× w(v − u)] = 0.

Multiplying by w(v − u), integrating over Ω, integrating by parts, and using the
boundary condition (17), we obtain∫ (ρ

w

)2

| ∇ × w(v − u) |2 dx = 0,(21)

which implies (6). This completes the proof.
Since I[v] is quadratic and bounded below, it has a unique minimizer whether

the compatibility condition (5) is satisfied or not. However, when (5) is violated, the
mesh velocity no longer satisfies (4) and equivalently the Jacobian is not specified by
(3). Instead, (20) can be seen to hold with

c =
∂ρ̄

∂t
,

where ρ̄ is the average of the function ρ over Ω. Comparing with the GCL condition
(2) shows that

−1

ρ

D(ρ− ρ̄)

Dt
=

1

J

DJ

Dt
.

So while (3) does not hold when (5) is violated, if (Dρ̄)/(Dt) is small, then it is
approximately satisfied.

Summary of formulations. Thus far we have seen that given the condition
(5) there are several mathematically equivalent systems for determining x = x(ξ, t).
For convenience, they are summarized below. Some implementation aspects will be
discussed in section 5.

For the first, a system written explicitly in terms of x(ξ, t), or more precisely, the
time derivative xt, is solved. Specifically, combining (12) with (16), (8), and (17), we
solve

−ρ∇

[
∇ · (ρxt) + ∂ρ

∂t

]
+ w∇× (ρ

w

)2
[∇× w(xt − u)] = 0 in Ω,

xt · n = 0 on ∂Ω,
[∇× w(xt − u)] × n = 0 on ∂Ω.

(22)

This system is highly nonlinear because ρ, w, and u are functions of x, and ∇ is
defined in terms of the physical variables. The PDE is also nonstandard (neither
parabolic nor hyperbolic) since the time derivative xt appears in the highest spatial
derivative terms.

A MOVING MESH METHOD BASED ON GCL 125

For the second, xt is obtained by solving for the potential function φ from (9)
and (10), i.e.,

xt = u(x, t) + 1

w(x,t)∇φ(x, t) in Ω,

where φ satisfies

∇ · (ρ
w∇φ

)
= −∂ρ

∂t −∇ · (ρu) in Ω,
∂φ
∂n = −wu · n on ∂Ω.

(23)

For the third, the coordinate transformation is obtained by computing the mesh
velocity field v(x, t) = xt. One approach for obtaining v is to directly minimize the
functional I[v] subject to boundary condition (8), i.e.,

xt = v(x, t) in Ω,
where v directly minimizes I[v] in (11) subject to
v · n = 0 on ∂Ω.

(24)

A possible alternative approach is to find v by solving the div-curl system (4), (6),
and (8), or

xt = v(x, t) in Ω,
where v satisfies

∇ · (ρv) + ∂ρ
∂t = 0 in Ω,

∇× w(v − u) = 0 in Ω,
v · n = 0 on ∂Ω.

(25)

We conclude this section by making some observations about the existence and
smoothness of the coordinate transformation. Since from (12) x(ξ, t) is determined as
a family of integral curves of the direction field v(x, t), its existence and smoothness
depend solely on the smoothness of v(x, t). Moreover, since v(x, t) is the solution of a
system of elliptic PDEs—the Euler–Lagrange equation (16) of the quadratic functional
(11)—it is smooth if ∂Ω, ρ, w, and u are smooth. The choices of these functions are
discussed in the next two sections.

4. Relation to and comparison with other moving mesh methods. Be-
fore discussing the implementation of the general moving mesh strategy described
above, to which we refer hereafter as simply the GCL method, it is instructive to
compare it with some of the existing moving mesh methods.

The Lagrangian method. The Lagrangian method, or the method of charac-
teristics, has been widely used for simulation of incompressible fluid dynamics prob-
lems. Its primary feature is the use of the so-called Lagrangian coordinates defined
by

xt = uf (x, t),(26)

where uf is the flow velocity. In this coordinate system every mesh point represents
a particle, so there are no convection terms in the governing equations, and the non-
singularity of the coordinate transformation from the Lagrangian coordinates to the
Euler coordinates is guaranteed by the incompressibility condition of the fluid. How-
ever, as is well known, the mesh generated in the Lagrangian coordinates is often too
skewed to be useful in simulating the diffusion process. This inadequacy has been a
driving force behind the development of hybrid methods such as the particle-in-cell
method [12].

126 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

The close relation between the GCL and Lagrangian methods is made clear by
comparing (23) with (26). In fact, the GCL method can be regarded as a generaliza-
tion of the Lagrangian method when choosing the control vector field u to be the flow
velocity uf . As a special case, taking ρ = constant (no adaption), for incompressible
fluid flow where ∇ · uf = 0 we have φ = constant, and a pure Lagrangian method
(26) results.

The deformation map method. The deformation map is introduced by Moser
[20] and Dacorogna and Moser [7] in their study of volume elements of a compact
Riemannian manifold to prove the existence of a C1 diffeomorphism with specified
Jacobian. The mapping has been adopted by Liao and coworkers [2, 18, 23] to generate
adaptive moving meshes. In our notation, this mapping x = x(ξ, t) : Ωc ≡ Ω → Ω is
determined from the system of equations [23]

xt = 1

ρ(x,t)∇φ(x, t) in Ω,

∆φ = −∂ρ
∂t in Ω,

∂φ
∂n = 0 on ∂Ω.

(27)

It is easy to see that (27) corresponds to the system (23)—the GCL method formu-
lation which involves the potential function φ in the case where u = 0 and w = ρ.

They also use the alternative formulation [2]

xt = ν(x,t)
ρ(x,t) in Ω,

∇ · ν = −∂ρ
∂t in Ω,

∇× ν = 0 on ∂Ω.

(28)

Note that letting ν = ρv, this becomes the div-curl system (25) with u = 0 and
w = ρ.

The equation for xt in both cases is nonlinear, and for simplicity explicit time
integration schemes are used in [2, 23]. For (27), the solution of the potential equation
for φ is straightforward. However, it can be difficult to solve (27) with an implicit
integrator because interpolation of the potential function φ is required at points other
than grid nodes, and the flux-free condition cannot generally be preserved. For (28),
the div-curl system is solved using a least squares approach. In the next section,
we return to these issues when we discuss several numerical approaches to solve the
systems.

While these two formulas using the deformation map are mathematically equiv-
alent to (25) and are the special case of the GCL method with w = ρ, u = 0, they
are not necessarily the best choice. In fact, from (25) we see that the mesh velocity
is generally not irrotational, viz.,

∇× (ρv) = 0 or ∇× v = −1

ρ
∇ρ× v,(29)

and our limited experience indicates that an irrotational mesh velocity field can often
be preferable because more regular grids are produced (see the next section).

The moving finite element method. The MFE method developed by Miller
and Miller [21, 22] also generates a moving mesh through a mesh velocity xt. Specif-
ically, for a given time-dependent physical problem

∂u

∂t
= Lu,

A MOVING MESH METHOD BASED ON GCL 127

where L is a spatial differential operator, the continuous version of the MFE de-
termines a solution u(x(ξ, t), t) and xt(ξ, t) by minimizing the residual in the least
squares sense, viz.,

min
xt,

Du
Dt

I

[
xt,

Du

Dt

]
≡
∫

Ω

(
Du

Dt
−∇u · xt − Lu

)2

W dx,

where the weight function W = 1 for the classical version of MFE [21, 22] and
W = 1/(1 + |∇u|2) for the gradient weighted MFE (GWMFE) [4, 5]. The functional
derivative of I[xt,

Du
Dt] with respect to xt can become singular and regularization is

needed in practice.

While the formulation of MFE appears to be quite distinct from the GCL method,
they share common features: both obtain the mesh equation by minimizing least
squares functionals with respect to mesh velocity xt, and both have an inherent
relation to the Lagrangian method [1].

The MMPDE method. There is another large class of adaptive mesh methods
which contrast with those above. For these, the coordinate transformation is deter-
mined by minimizing a functional which involves the mesh transformation x directly
instead of its velocity field. One basic approach is to define the inverse mapping
ξ = ξ(x, t) : Ω → Ωc at each time level as the minimizer of the functional

I[ξ] =

∫
Ω

∑
i

(∇ξi)TG−1∇ξi dx,(30)

where the monitor function, G, is a symmetric positive definite matrix connecting
mesh properties to the physical solution; see [3, 27]. A strategy of building in the
mesh velocity xt, which is used by Huang, Ren, and Russell [13] and Huang and
Russell [14, 15], is the so-called moving mesh PDE (MMPDE) approach. For it, one
desires to move the mesh in a direction of decreasing I[ξ], e.g., so that

∂ξ

∂t
= −1

τ

δI

δξ
or

∂ξi

∂t
=

1

τ
∇ · (G−1∇ξi),(31)

where τ > 0 is the parameter used for adjusting the time scale of mesh movement.
Interchanging the roles of the dependent and independent variables, a set of quasi-
linear parabolic PDEs, or MMPDEs, is obtained for xt(ξ, t).

Unlike the above three types of methods (the Lagrangian, MFE, and GCL meth-
ods), these methods employ a functional to determine the mapping itself rather than
its mesh velocity xt, and as such the resulting coordinate transformation can be more
or less viewed as a quasi-equilibrium state. A more obvious advantage is that, if
the mesh solution drifts away from equilibrium, there is a stabilizing effect; in addi-
tion, skewness and smoothness of the mesh transformation can be easily controlled
because it satisfies a basically elliptic system of equations at each time instant. In
contrast, for the Lagrangian-type methods where the mesh is determined by minimiz-
ing a functional involving the mesh speed, the mesh speed instead of the coordinate
transformation itself obeys an elliptic system of PDEs at each time level. A key ques-
tion is whether or not this is more likely to produce unstable mesh movement and
generate skewed meshes.

128 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

5. Implementation. A large variety of implementations of the GCL method
are possible. We restrict attention to those given in section 3.

Among the most straightforward implementations is the first one based on the
Euler–Lagrange equation (22). Any standard spatial discretization method can be
used to discretize (22) on a physical mesh, and the resulting system of ODEs

A(X)Xt = B(X),(32)

where X is the vector of mesh nodes, can be integrated explicitly or implicitly. Un-
fortunately, with this implementation it may not be easy to realize the boundary
conditions numerically.

One can avoid this difficulty by instead using (24) for a direct minimization
method, i.e., discretize the functional (11) directly, then minimize with respect to
the discrete velocity vj(t) = v(xj , t), and finally replace vj with (dxj/dt). However,
the main difficulty with this method comes from the highly nonlinear nature of the
resulting system (32), which can make its solution prohibitively expensive to compute
and therefore impractical.

The second approach is based on the system (23) involving the potential function
φ. For this method, the elliptic equation for the potential function is solved on the
physical mesh, and a new mesh is then obtained by integrating the mesh equation
xt = v. As mentioned in the previous section, an explicit integration scheme has
been used in [2, 23]. A possible problem with explicit integration is a severe stability
restriction on the time step. On the other hand, an implicit integration scheme is not
without problems. It requires interpolation of φ at nongrid points. The boundary
condition, defined in terms of ∇φ, is not generally preserved by an interpolation
method, and as a result boundary points can move out of the physical domain. The
main advantage of this method is that it can be efficiently implemented in parallel,
since only a Poisson equation (for the potential function) needs to be solved at each
time step, and the mesh equation can be solved for the coordinates of each node
independently.

The third approach is designed to avoid the problem of boundary points moving
out of the physical domain during the implicit integration. It is based upon (24),
or directly minimizing the functional (11) to obtain the mesh velocity field before
integrating the mesh equation (12) for x. Since the boundary condition (8) is defined
directly in terms of the mesh velocity, it can be preserved when interpolating v in
the implicit integration. The method is slightly more expensive to implement than
the second one since a system of three PDEs must be solved for the three velocity
components.

We have tested straightforward implementations of all three of these methods,
and on the basis of this limited experience, we prefer the third in terms of overall
performance. For this reason, we give only a detailed description of the FEM imple-
mentation of it.

Finite element discretization of the functional I[v]. We use an s-stage
explicit or implicit Runge–Kutta method to integrate the mesh equation (12). This
requires determining v(x, tn,m), 1 ≤ m ≤ s, where tn,m is the intermediate time level
at the mth stage of the nth step. Below we consider how to determine v(x, tn,m) at
a specific time tn,m ∈ [tn, tn+1].

Recall that v is the minimizer of the functional in (11) subject to boundary
condition (8). While in principle the functional or least squares system at tn,m can
be discretized over any mesh, for accuracy sake it is preferable to use an adaptive

A MOVING MESH METHOD BASED ON GCL 129

mesh Ωh(tn) associated with the monitor function ρ. For this, assume that Ωh(tn)
is composed of N elements K(tn), which are either triangles or quadrilaterals. Let
φj(x) be the nodal basis function (viz., “hill function”) associated with node j of
the mesh Ωh(tn). More precisely, let K(tn) be an element with node j as one of its
vertices, and let FK(tn) be the affine mapping from a standard reference element K̂

onto K(t). If node j of K(tn) corresponds to node j′ of K̂, then φj(x) is defined on
K(tn) as

φj(x) = φ̂j′(F
−1

K(tn)(x)),

where φ̂j′ is the basis function associated with node j′ of K̂. Note that by definition
φj(x) depends on the mesh Ωh(tn).

Let vj be the value of the vector field v at node j of the mesh Ωh(tn). Approxi-
mating v(tn) by the piecewise linear function

v(x, t) =
∑
j

vj(t)φj(x)

and substituting into the variation of I[v],

δI =

∫
Ω

{[
∇ · (ρv) +

∂ρ

∂t

]
∇ · (ρδv) +

(ρ
w

)2

[∇× w(v − u)] · [∇× (wδv)]

}
,

we obtain

δI =
∑
j

∫
Ω

{
∇ · (ρφjvj)∇ · (ρδv) +

(ρ
w

)2

[∇× (wφjvj)] · [∇× (wδv)]

}

−
∫

Ω

{
−∂ρ

∂t
∇ · (ρδv) +

(ρ
w

)2

[∇× (wu)] · [∇× (wδv)]

}
.(33)

Letting δI = 0 and taking δv = ekφi, k = 1, 2, 3, i = 1, . . . , N , where {ek, k = 1, 2, 3}
are the unit vectors in �3, we obtain the system of algebraic equations

SV = F ,(34)

where

S = (sij), V =

v1

v2

...
vN

 , F =

f1

f2
...

fN

 ,

and sij and f i are defined by

(35)

aT sijb =

∫
Ω

{
∇ · (ρφjb)∇ · (ρφia) +

(ρ
w

)2

[∇× (wφjb)] · [∇× (wφia)]

}
,

aTf i =

∫
Ω

{
−∂ρ

∂t
∇ · (ρφia) +

(ρ
w

)2

[∇× (wu)] · [∇× (wφia)]

}

for all a, b ∈ �3. Note that S is symmetric positive definite.

130 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

Time integration of xt = v(x, t). While an explicit method is straightforward
to implement for the time discretization of the ODE system (12), we employ implicit
methods because of their superior stability properties. In particular, we use the
second-order singly diagonally implicit Runge–Kutta method SDIRK2 and solve the
resulting systems of linear equations with the preconditioned BiCGStab2 [10, 26]
with a level-1 fill-in ILU preconditioner. During the integration of the mesh equation
xt = v, piecewise linear (or bilinear) interpolation is used to obtain values of v(x, t)
at points other than the grid points of Ωh(tn).

Choices for functions w, ρ, and u. As mentioned in the previous section,
there are two more or less obvious choices for the weight function, w = ρ and w = 1.
The former corresponds to the deformation map method and generally does not result
in an irrotational mesh velocity field (even when u = 0). The latter results in an
irrotational mesh velocity field when u = 0, i.e.,

∇× v = 0.(36)

Of course, numerous other options are also possible, but their mathematical and/or
physical significance is unclear to us.

The choice of the control vector field u is very problem dependent. For fluid
dynamics problems, a good choice of it can be the flow velocity, since this is likely
to reduce the magnitude of the convection term. However, when mesh adaption is
allowed (i.e., ρ is not constant), grid movement due to the mesh adaption may increase
the convection term and make u more difficult to choose. While this issue certainly
warrants further investigation, we have found that generally speaking, when physical
intuition for choosing u is not available, the best option is simply to choose u = 0.

Our choice of the monitor function ρ is primarily motivated by the fact that
(3) is a generalization of the equidistribution principle. In fact, (3) implies that ρ
plays the role of a density function, i.e., the larger ρ, the denser the mesh. We can
compute ρ using the solution gradient or an error indicator such as an interpolation
error estimator. At the same time, the overall mesh density can also be controlled
by limiting the ratio (max ρ)/(min ρ). Finally, it is worth mentioning that ρ can be
chosen as a physical variable which is positive and whose integral over the domain is
conserved. An example is the (real) density function in compressible fluid dynamics.

6. Numerical experiments. To demonstrate various features of the moving
mesh method based on the GCL, in this section we present some two-dimensional
numerical results for which the monitor function is given. The method is also forced
(numerically) to satisfy the compatibility condition (5). Specifically, given a density
function d = d(x, y, t) for the desired mesh adaption, we define the normalized monitor
function

ρ(x, y, t) =
d(x, y, t)∫

Ω
d(x̃, ỹ, t)dx̃dỹ

,(37)

where the integral is calculated with a midpoint rule. Unless stated otherwise, we
use a 40× 40 uniform rectangular mesh as the initial mesh in the computations. The
control vector field is taken as u = 0 in all of the examples but Example 5. The
function

E(x, y, t) = ρ(x, y, t)J(x, y, t)

A MOVING MESH METHOD BASED ON GCL 131

is used to measure the degree to which the computed mesh satisfies the equidistri-
bution relation (3). Recall that in theory E(x, y, t) is time independent, and thus
remains constant. In fact, E = 1 initially for all the examples here, so it can be
expected that E(x, y, t) will be close to one for an accurate mesh.

Example 1. For our first example, an adaptive mesh will be generated for the
density function

d(x, y) = 1 + A exp

(
−50

∣∣∣∣∣
(
x− 1

2

)2

+

(
y − 1

2

)2

−
(

1

4

)2
∣∣∣∣∣
)
,

where A is a parameter modulating the ratio of the largest cell size to the smallest
one. Loosely speaking, the mesh should be about 1+A times denser around the circle
(x− 1

2)
2 + (y − 1

2)
2 = (1

4)
2 than in other regions.

Using the GCL method, the time-dependent monitor function is defined by

d(x, y, t) = 1 + tA exp

(
−50

∣∣∣∣∣
(
x− 1

2

)2

+

(
y − 1

2

)2

−
(

1

4

)2
∣∣∣∣∣
)
,

so it changes continuously from the constant 1 at t = 0 to d(x, y) at t = 1. Three
parameter values A = 5, 10, and 20 are considered. The weight function is taken as
w = 1, so the mesh velocity field is irrotational.

Figure 1 shows the computed adaptive meshes and E(x, y, t) at t = 1 for the
cases A = 5 and 20 with time step δt = 0.1. Note that the mesh is concentrated
in the proper region, and E is around 1 for both cases. In fact, at t = 1 we have
0.9645 ≤ E ≤ 1.0774 for A = 5 and 0.7555 ≤ E ≤ 1.1417 for the more difficult
case A = 20. The deviation of E from 1 generally depends on the sizes of the time
step and the mesh cells as well as the value of parameter A (which determines the
ratio of the largest-to-smallest cell size). The larger the time step size, or the coarser
the mesh, or the the bigger the value of A, the larger the discretization error and
consequently the larger the deviation of E from 1. In Table 1 we list the maximum
deviation ‖E − 1‖∞ for the case A = 10 and for various sizes of time step and mesh.
It is clear that E approaches 1 when δt is reduced and the mesh size is increased.
Table 2 lists the maximum deviation for A = 5, 10, and 20 with a 40 × 40 mesh and
various values of δt. Not surprisingly, the size of δt required to generate satisfactory
adaptive meshes (e.g., having E within ±20% of 1) depends upon the size of the
parameter A. Consequently, to closely approximate the generalized equidistribution
relation (3), the number of time integration steps should be proportional to the ratio
of the largest-to-smallest cell size—a large step size δt can lead to poor results. This
can be seen in Figure 2 where δt = 0.2 is used for the cases A = 10 and 20.

Computations done with the weight function w = ρ give nearly the same results
for this example. This is because the mesh movement (starting from a uniform initial
mesh) is approximately in the radial direction of the circle (which is identical to the
direction of ∇ρ), and therefore we roughly have ∇ρ×xt = 0 or ∇×xt = 0 (see (29)).
In other words, for this example the mesh velocity is irrotational even when w = ρ is
used.

Example 2. For the second example, a moving mesh is generated for the time-
dependent monitor function defined by (37) and the density function

d(x, y, t) =

1 + 100(t + 0.1) exp(−50|(x− 1
2)

2 + (y − 1
2)

2 − 0.09|)
for − 0.1 < t < 0,

1 + 10 exp(−50|(x− 1
2 − t)2 + (y − 1

2)
2 − 0.09|)

for t ≥ 0.

132 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

A=20, dt=0.1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

A=20, dt=0.1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Fig. 1. Example 1. Adaptive meshes and E for the case A = 5 (top) and A = 20 (bottom) with
40× 40 mesh and δt = 0.1.

Table 1
The maximum deviation ‖E − 1‖∞ at t = 1 for Example 1 with A = 10, w = 1, u = 0 and for

various sizes of time step and mesh.

Mesh δt = 0.2 δt = 0.1 δt = 0.05 δt = 0.025
20× 20 1.0323 0.2294 0.1989 0.1802
40× 40 0.1437 0.0954 0.0983 0.0945
80× 80 0.2202 0.0445 0.0368 0.0335
160× 160 0.2881 0.0257 0.0191 0.0161

Table 2
The maximum deviation ‖E−1‖∞ at t = 1 for Example 1 with a 40×40 mesh and for various

values of A and time step.

δt = 0.2 δt = 0.1 δt = 0.05 δt = 0.025
A = 5 0.1006 0.0774 0.0662 0.0614
A = 10 0.1437 0.1049 0.0983 0.0945
A = 20 1.8845 0.2445 0.2385 0.2356

A MOVING MESH METHOD BASED ON GCL 133

A=10, dt=0.2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

A=20, dt=0.2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.5

1

1.5

2

2.5

3

Fig. 2. Example 1. Adaptive meshes and E for the case A = 10 (top) and A = 20 (bottom)
with 40× 40 mesh and δt = 0.2.

This function is defined using two time phases, one from t = −0.1 to t = 0 and the
other for t > 0. The purpose of the first phase is to produce an adaptive mesh for
t = 0, starting from a uniform mesh at t = −0.1. For t > 0, the function simulates
a circular peak which moves right at speed 1 and eventually leaves the domain while
maintaining its shape.

We plot in Figure 3 the moving mesh and the distribution of E obtained for
w = 1 and δt = 0.01. As expected, the mesh points are concentrated around the circle
(x− 1

2)
2 + (y − 1

2)
2 = 0.32 at the beginning (t = 0) and then follow the movement of

the circular peak. The function E ranges from 0.6 to 1.4 during the course of mesh
movement.

In Figure 4 we display the corresponding results obtained with the weight function
w = ρ. It is apparent that the moving mesh is considerably different from the previous
one. The major influence of w = ρ occurs near the top and bottom parts of the moving
circle (x− 1

2 − t)2 + (y − 1
2)

2 = 0.32. This can be explained as follows. The velocity
field xt is in the horizontal direction and ∇ρ is in the radial direction of the circle, so

134 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

t=0.0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

t=0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

t=0.5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t=0.75

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 3. Example 2. Moving meshes and E at time t = 0, 0.25, 0.5, 0.75 (with w = 1).

A MOVING MESH METHOD BASED ON GCL 135

t=0.0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

t=0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t=0.5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

t=0.75

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−2

0

2

4

6

8

10

12

Fig. 4. Example 2. Moving meshes and E at time t = 0, 0.25, 0.5, 0.75 (with w = ρ).

136 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

∇ρ × xt vanishes at the left and right tips and takes extreme values at the top and
bottom tips. From (29), the mesh velocity field is only rotation free at the left and
right tips, and the mesh points rotate most at the top and bottom of the circle.

It is evident from this particular example that the moving meshes generated with
w = 1 are less skewed than those obtained with w = ρ. Although it is in general
hard to predict the precise influence caused by the choice w = ρ, it appears from our
experience that w = 1, which produces an irrotational mesh velocity, will generally
produce better behaved adaptive meshes.

It is interesting to note that the meshes obtained for this example are not smooth;
see Figures 3 and 4. This appears to be an inherent feature of the GCL method,
because the locations of the mesh points are not governed by either an elliptic or a
parabolic PDE. The nonsmoothness can be seen more clearly in the next example.

Example 3. This example is chosen to demonstrate the effect of discretization
error and the nonsmoothness of meshes generated by the GCL method. The density
function is given as

d(x, y, t) =

{
1 + 50(0.1 + t) exp(−50|y − 1

2 |) for − 0.1 < t < 0,
1 + 5 exp(−50|y − 1

2 − 1
4 sin(2πx) sin(2πt)|) for 0 ≤ t ≤ 1,

which simulates the motion of a periodic sine wave. We use w = 1 and δt = 0.005.
The moving mesh is plotted in Figure 5 for various time instants. Clearly, the

mesh concentration captures the moving sine wave accurately. The function E ranges
from 0.7 to 1.3 over the time period. Note that the monitor function ρ is periodic,
and at time t = 1 it is restored to its original profile. However, the mesh does not
return to its original form, mainly because of the spatial and temporal discretization
errors. The nonsmoothness of the mesh is also noticeable.

Liu, Ji, and Liao [19] propose a “static mode of the moving mesh method” in an
attempt to avoid this undesired effect of the discretization error. For any given time
level t̂, the idea is to fix the density function values as constant—its value at t̂—and
use continuation starting from a uniform mesh to produce the needed adaptive mesh
at t̂. This procedure preserves the periodicity of the monitor function and, as one may
expect, generates a better adaptive moving mesh. Unfortunately, the procedure can
turn out to be extremely costly. As we have seen in Example 1, a substantial number
of continuation steps must be used to generate a reasonably accurate adaptive mesh,
and this number increases with a correspondingly increased level of adaptivity (where
the ratio of largest-to-smallest cell size grows).

Example 4. For this example the density function is given by

d(x, y, t) =

1 + 50(0.1 + t) exp(−50|(x− 3
4)

2 + (y − 1
2)

2 − .01|)
for − 0.1 < t < 0,

1 + 5 exp(−50|(x− 1
2 − 1

4 cos(2πt))2 + (y − 1
2 − 1

4 sin(2πt))2 − .01|)
for t ≥ 0.

For this monitor function, the largest values of ρ occur around a small circle which
rotates about the point (1

2 ,
1
2).

This is a very difficult test problem for many moving mesh methods, especially
for ones with close similarity to the Lagrangian method. With these methods, as
the mesh points and concentration follow the small moving circle rotating around
the point (1

2 ,
1
2), if some of the boundary mesh points stay fixed (as in the current

case where the four corner points are fixed), then the mesh becomes more and more
skewed and eventually singular. Unfortunately, the present moving mesh based on

A MOVING MESH METHOD BASED ON GCL 137

t=0.0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t=0.25

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t=0.75

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t=1.0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 5. Example 3. Moving meshes at time t = 0, 0.25, 0.75, 1.

the GCL also suffers from this difficulty. Although the GCL condition guarantees
nonsingularity of the Jacobian of the coordinate transformation in the continuous
case, it does not prevent the mesh from becoming increasingly skewed. Meanwhile,
the points of a highly skewed mesh can easily tangle each other numerically. This is
illustrated in Figure 6 for the case w = 1 and δt = 0.005.

The function E ranges from 0.7 to 1.3, but the moving mesh becomes more skewed
with time. That is, even though the mesh becomes very skewed, the generalized
equidistribution relation is closely satisfied.

Example 5. The final example illustrates the effect of the control vector field u
on the adaptive moving mesh. As discussed in section 4, the GCL method reduces
to a pure Lagrangian method when ρ = constant and u is divergence free inside the
domain and satisfies u ·n = 0 on the boundary. A special example is where the mesh
velocity is given by the angular direction u for a unit disk Ω. However, the mesh
movement is not so obvious if u · n is not zero on the boundary and/or some of the

138 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

t=0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

t=0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

t=0.75

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

t=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Fig. 6. Example 4. Moving meshes and E at time t = 0, 0.5, 0.75, 1.

A MOVING MESH METHOD BASED ON GCL 139

boundary mesh points such as corner points stay fixed. To see this, we consider the
case where w = 1, ρ = 1, and

u = 2π

(
−y +

1

2
, x− 1

2

)
.

The control vector field is a divergence-free rotation around the center of the domain,
with angular speed 1. In Figure 7 we display the moving mesh and E at times
t = 0, 0.1, 0.2 obtained with δt = 0.01. Away from the boundary, the influence of
the boundary condition is small and the mesh points move at a speed close to u.
However, near the boundary, and especially on it, the boundary condition has a much
more significant effect, and as a consequence the mesh points accumulate around the
corners (where the corner points are fixed). The mesh stops moving at around t = 0.2
because too many points have accumulated near the corners. It is interesting to note
that for the current case we nevertheless have 0.9 ≤ E ≤ 1.1, indicating a high degree
of satisfaction of the equidistribution relation (3) by the computed mesh.

7. Conclusions and comments. We present in this paper a moving mesh
method based upon the geometric conservation law. The basic idea is to minimize a
functional of the mesh speed xt which involves its divergence and curl components.
While the divergence part comes from the geometric conservation law and a pre-
scribed monitor function, the curl of xt is controlled by a given weight function w
and a vector field u. Using the Helmholtz decomposition theorem, we see why the
minimizer of the functional (of the mesh speed) will drive mesh points in such a way
that the rate of change of the cell volumes is proportional to the rate of change of the
monitor function, causing the desired mesh adaption. A nice feature of this approach
is that the cell volume can then be determined from the magnitude of the monitor
function—a generalization of the well-known equidistribution principle.

Several different formulations of the basic mesh adaption method have been pre-
sented. The moving mesh method based upon Moser’s deformation method which
has been recently studied by Liao and his coworkers can be interpreted as a particular
case of one of them with w = ρ and u = 0. In our somewhat limited experience, a
more desirable choice of w from the numerical point of view appears to be w = 1,
which results in an irrotational mesh velocity field, namely, ∇ × xt = 0, and results
in less skewed meshes. Other choices for w and u are yet to be investigated.

Several numerical examples are presented to demonstrate the performance of the
moving mesh method (or, more precisely, of an implementation of the formulation
which we prefer). It is shown that the cell volumes of the resulting adaptive meshes
are usually within ±30% of the exact ones defined by the monitor function.

Like other moving mesh methods based on determining the mesh speed, the mov-
ing mesh method based on the GCL shares many common features with the La-
grangian method and consequently suffers from the same difficulty: a highly skewed
mesh can often result when the mesh points follow the moving features in a monitor
function. Though it is possible to use a brute force method to circumvent this diffi-
culty, e.g., simply discard all the intermediate moving steps and calculate the adaptive
mesh from the initial mesh, more efficient and effective approaches are clearly needed
to correct meshes for which some control over skewness has been lost.

The GCL method shares with Miller’s MFE the feature that they both minimize
a functional with respect to the mesh velocity. But unlike the MFE, for which a
singular mass matrix can result, the GCL method in theory leads to a well-defined
PDE (although it may be quite expensive to solve).

140 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

t=0.0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

t=0.05

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

t=0.1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.9

0.95

1

1.05

1.1

1.15

Fig. 7. Example 5. Moving meshes and E at time t = 0, 0.05, 0.1.

A MOVING MESH METHOD BASED ON GCL 141

The GCL method is also compared with the MMPDE method. The MMPDE
method involves a formulation in terms of an elliptic PDE. With the MMPDE ap-
proach, the mesh locations are obtained by minimizing a quadratic functional, and in
this sense, the mesh locations are globally distributed. As a consequence, a smooth
and less skewed mesh can often result. The GCL approach, on the other hand, by min-
imizing a quadratic functional determines the mesh speed instead of mesh location,
and only the mesh speed is globally distributed. As demonstrated in the numerical
results, generating nonsmooth, skew adaptive meshes can generally not be avoided,
and the challenge of overcoming this difficulty remains.

Acknowledgment. The authors would like to thank the referees for their very
constructive comments.

REFERENCES

[1] M. J. Baines, Moving Finite Elements, Oxford University Press, New York, 1994.
[2] P. Bochev, G. Liao, and G. Pena, Analysis and computation of adaptive moving grids by

deformation, Numer. Methods Partial Differential Equations, 12 (1996), pp. 489–506.
[3] J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimen-

sions, J. Comput. Phys., 46 (1982), pp. 342–368.
[4] N. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite

element code I: In one dimension, SIAM J. Sci. Comput., 19 (1998), pp. 728–765.
[5] N. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite

element code II: In two dimensions, SIAM J. Sci. Comput., 19 (1998), pp. 766–798.
[6] C. I. Christov, Orthogonal coordinate meshes with manageable Jacobian, in Numerical Grid

Generation, J. F. Thompson, ed., North-Holland, New York, 1982, pp. 885–894.
[7] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian de-

terminant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), pp. 1–26.
[8] I. Demirdžić and M. Perić, Space conservation law in finite volume calculations of fluid flow,

Internat. J. Numer. Methods Fluids, 8 (1988), pp. 1037–1050.
[9] I. Demirdžić and M. Perić, Finite volume method for prediction of fluid flow in arbitrarily

shaped domains with moving boundaries, Internat. J. Numer. Methods Fluids, 10 (1990),
pp. 771–790.

[10] M. H. Gutknecht, Variants of BICGSTAB for matrices with complex spectrum, SIAM J. Sci.
Comput., 14 (1993), 1020–1033.

[11] C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing
method for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227–253.

[12] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill,
New York, 1981.

[13] W. Huang, Y. Ren, and R. D. Russell, Moving mesh partial differential equations
(MMPDEs) based on the equidistribution principle, SIAM J. Numer. Anal., 31 (1994),
pp. 709–730.

[14] W. Huang and R. D. Russell, A high dimensional moving mesh strategy, Appl. Numer.
Math., 26 (1997), pp. 63–76.

[15] W. Huang and R. D. Russell, Moving mesh strategy based on a gradient flow equation for
two-dimensional problems, SIAM J. Sci. Comput., 20 (1999), pp. 998–1015.

[16] P. M. Knupp, Jacobian-weighted elliptic grid generation, SIAM J. Sci. Comput., 17 (1996),
pp. 1475–1490.

[17] P. M. Knupp and N. Robidoux, A framework for variational grid generation: Conditioning
the Jacobian matrix with matrix norms, SIAM J. Sci. Comput., 21 (2000), pp. 2029–2047.

[18] G. J. Liao and D. Anderson, A new approach to grid generation, Appl. Anal., 44 (1992),
pp. 285–298.

[19] F. Liu, S. Ji, and G. J. Liao, An adaptive grid method and its application to steady Euler
flow calculations, SIAM J. Sci. Comput., 20 (1998), pp. 811–825.

[20] J. Moser, On the volume elements of a manifold, Trans. Amer. Math. Soc., 120 (1965), pp. 286–
294.

[21] K. Miller and R. N. Miller, Moving finite elements. I, SIAM J. Numer. Anal., 18 (1981),
pp. 1019–1032.

[22] K. Miller, Moving finite elements. II, SIAM J. Numer. Anal., 18 (1981), pp. 1033–1057.

142 WEIMING CAO, WEIZHANG HUANG, AND ROBERT D. RUSSELL

[23] B. Semper and G. Liao, A moving grid finite-element method using grid deformation, Numer.
Methods Partial Differential Equations, 11 (1995), pp. 603–615.

[24] P. D. Thomas and C. K. Lombard, Geometric conservation law and its application to flow
computations on moving grids, AIAA J., 17 (1979), pp. 1030–1037.

[25] J. G. Trulio and K. R. Trigger, Numerical Solution of the One-Dimensional Hydrody-
namic Equations in an Arbitrary Time-Dependent Coordinate System, Report UCLR-
6522, Lawrence Radiation Laboratory, University of California, Berkeley, 1961.

[26] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

[27] A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle
mesh, J. Comput. Phys., 1 (1967), pp. 149–172.

