>

‘H Available at

www.ElIsevierMathematics.com @g__@ APPLIED

(]
ANEMA
1Y,

POWERED BY SCIENCE @DIRECT“ < NUMERICAL

MATHEMATICS
ELSEVIER Applied Numerical Mathematics 47 (2003) 121-138

www.elsevier.com/locate/apnum

Approaches for generating moving adaptive meshes:
location versus velocity

Weiming Cad!, Weizhang Huan®*?, Robert D. Russef®

2 Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA
b Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA
¢ Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Abstract

A variety of approaches for generating moving adaptive methods are summarized and compared. They basically
fall into two groups: the velocity and the location based methods. The features, including the advantage and
weakness, of each group are addressed. Brief numerical results are presented for several commonly usec
approaches to highlight their features and performance.
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1. Introduction

Mesh adaptation plays an indispensable role in the efficient numerical simulation of many physical
phenomenon. Among these we mention the occurrence of boundary and interior layers, blow-up, and
moving interfaces. Over the past 20 years, with the development of various error estimate techniques,
use of mesh adaptation has become standard practice in most numerical softwares.

The moving mesh method, or tiherefinement method, has been relatively less developed than other
mesh adaptation techniques. For this method, the adaptive mesh is generally constructed as the imag
under an appropriate mapping of a fixed mesh over an auxiliary domain. By suitably defining the
mapping, one may control various mesh properties, e.g., mesh density and alignment, that are desirable
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for the underlining applications. Although this method has been less popular than the local refinement
(or h-refinement) method due to the difficulty in deriving suitable general governing equations for the
adaptive mapping, it offers some distinct features useful in numerical computation. For example, it is
in principle simple to implement, and much of the software based on fixed mesh methods can be easily
extended to incorporate moving adaptive meshes. When there is no addition and deletion of grid points,
difficulties from restarting the time integration procedure can be avoided. Moreover mesh movement fits
naturally the salient feature of many time dependent problems, resulting in minimal numerical diffusion
and dispersion.

During the past 20 years, and particularly the past 10 years, there have been a number of techniques
proposed for generating moving adaptive meshes. Miller and Miller [27], Carlson and Miller [8,9], and
Baines [1] developed moving finite element methods where nodal points are driven by the residual of
the finite element approximation. Like Lynch [24], Johnson and Tezduyar [20] use an automatic mesh
moving scheme in which the motion of the nodes is governed by the equations of linear elasticity, with
boundary conditions for these equations imposed by the motion of the fluid boundaries and interfaces.
Oden et al. [29] and Bank and Smith [2] propose updating the position of grid points by local averaging.
Liao and coworkers [3,25,30] apply the concept of deformation map in differential geometry to the
generation of moving adaptive meshes. Winslow [33], Thompson et al. [32], Brackbill and Saltzman [4],
Dvinsky [12], Brackbill [5], Knupp [21] and Knupp and Robidoux [23] propose various elliptic equations
or variational methods for defining the adaptive mapping. Recently, Huang [15] has proposed a new
mapping equation for which the relation with error distribution is clearly formulated. Finally, the
authors [7] have developed a type of moving mesh method based on the so-called geometric conservatior
law (GCL).

Most of these approaches can be classified into two groups. The first group is referrdettmaation
based methodbecause it controls directly the location of mesh points, or in the continuous sense the
mappingx (&) from the auxiliary domain to the physical domain. A typical method in this group is a
variational method which defines the mapping as the minimizer of a functional. The second group is
referred to ashe velocity based methaihce it targets directly the time derivative of the mappincE),
or the mesh velocity. The second type of methods includes MFE, the deformation method, and the GCL
method. For a velocity based method, the mesh equation is formulated for the mesh velocity, and the
mesh point location is obtained by integrating the velocity field.

In this paper, we will summarize and compare the features of these two types of methods. We will
focus on good representatives in each group, the GCL method and several typical variational methods.
An early variational approach is the popular harmonic mapping method, and the GCL method reduces to
the deformation method in a special case [7]. This paper is organized as follows. We first outline various
velocity based methods in Section 2. In Section 3, we describe a number of variational formulations
which have been considered in the past and the new variational formulation developed recently in [15].
Then we present several numerical examples in Section 4 to compare the adaptive meshes generated &
the GCL method and the variational methods. Finally, conclusions are drawn in Section 5.

Throughout this papek = (x1,...,x,) andé = (&1, ..., &,) are used to denote the variables in the
physical domains2 and computational domaige,., respectively.J = 3—’; is the Jacobian matrix for
mappingx (&) from 2, to 2, andJ = det(J). Also, V denotes the gradient operator with respect to
the physical coordinate.
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2. Velocity based approaches
2.1. The classical Lagrangian method

In fluid dynamics, Lagrangian coordinates form a moving coordinate system that is used to follow fluid
particles. More precisely, ii(x, t) denotes the velocity of the fluid,the reference coordinate of a fluid
particle, andx (&, r) the position of the particle at timg then the particle and therefore the Lagrangian
coordinate lines evolve with

ox
— —u. 1
ar " 1)

A fortuitous property of Lagrangian coordinates is that convection terms are eliminated from the
governing equation. For a viscous flow without inflow and outflow boundaries, the incompressibility of
the fluid guarantees that the coordinate transformation between the Lagrangian and Eulerian coordinates
is non-singular. However, it is well-known that the classical Lagrangian coordinates are rarely used
directly with the widely used discretization methods such as finite differences and finite elements,
because the mesh generated by the Lagrangian method is often very skew.

2.2. The moving finite element method

The moving finite element method (MFE) developed by Miller and Miller [27,28] also generates a
moving mesh through a mesh velocity. Specifically, suppose a time dependent physical problem

0

o _ Lu,

at
whereL is a spatial differential operator, is given. The continuous version of the MFE can be viewed as
determining a solutiom(x (&, ¢), t) andx, (£, t) by minimizing theL?-norm of the residual involving
andx, over the entire space, viz.,

. Du Du 2
mlnrl Imfe[x,,ﬁ]zf<E—Vu-x,—ﬁu) de,
2

Xt Dt

Where% is the time derivative fog fixed andW is a weight function. The classical version of MFE
usesW = 1 [27,28] and the gradient weighted MFE (GWMFE) [8,9] us#s=1/(1 + |Vu|?). In the

one dimensional case whefe = H(x, u, u,) (e.g.,H = —uu, for Burgers’ equation), MFE produces a
mesh speea, = — (0 H)/(du,), which is identical to or at least an approximation to the mesh speed for
the Lagrangian method [1].

A nice feature of the MFE is that the mesh attempts to follow a path corresponding to the smallest
weightedL2-norm of the residual of the discrete equations. In particular, if the physical PDE has a steady
state solution, then the steady state mesh is a locally optimal one that produces the least error among al
meshes with the same connectivity. The difficulty with MFE is that the mesh equations resulting from the
minimization of functionallye[x;, %] can become degenerate, and its numerical computation requires
careful regularization.
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2.3. The GCL method and the deformation method

For any coordinate transformatiar(é, r) from £2. to 2, the mesh speeg, and the time derivative of
the Jacobiary satisfy the identity

1DJ
~J Dt
This is the so-called geometric conservation law (GCL) [31].
We now consider the determination of the mappi{g, #) through its time derivative. Assume that
we are given a monitor functiop(x, t) > 0 which reflects difficulties in the numerical approximation of
the solution of the underlying problem. We want the cell size (area) in the adaptive mesh to be inversely
proportional top (x, t) at each time. To this end, we requirg (&, ¢) to satisfy
1Dp

V. x, =———, 3
X » Dt ()

By comparing Egs. (3) and (2), it follows readily that

V'x[

(2)

D

—(pJ)=0 4
which implies that

pJ = constant (5)

over 2 for all the time if it is so initially. Note that (5) can be regarded as a multi-dimensional
generalization of the well-known one dimensional equidistribution principle (defined in Section 3.1).
By the chain rule, (3) can be rewritten as

ap
V- (px;)+ o 0. (6)

This equation is insufficient to determine the vector figld Motivation for finding supplementary
equations is provided by the classic Helmholtz Decomposition Theorem for vectors: A continuous and
differentiable vector field can be resolved into the orthogonal sum of the gradient of a scalar field and the
curl of a vector field. Therefore;, can be determined by specifying both its divergence through (6) and
its curl. In practice, it is often desirable on physical grounds to have the adaptive mesh follow the flow of
some given vector field(x, r). Taking these considerations into account, we reqtiige r) to satisfy

Vxwx;, —u)=0, (7)

wherew > 0 is a weight function. This function, used only for defining (7), is different from those weight
functions used for mesh adaptation. Different choicesufdead to different curl conditions (7) for the
vector fieldx,. In our computations we take = 1 or w = p, but the possible utility of other choices
cannot be ruled out.

Since the divergence and curl of a vector field are orthogonafjfEgs. (2) and (7) can be formulated
as the minimization problem of the functional

1 9o |* P\ 2
Tgcilx/]1 = > /‘V (px) + 9 + (;) |V x w(x, —u)| dr, (8)
2
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where the weightp/w)? is chosen to make the functional invariant under scaling ahdw. Consider
the boundary condition

x,-n=0 0nas, )

namely, a condition assuring no mesh points move in or out of the domain. Under this condition, it is not
difficult to see thal, is the minimizer ofly if and only if it is the solution of (6) and (7), cf. [7].

Egs. (6), (7) and (9) form an elliptic system for the mesh velagjtyits solution exists and is smooth
as long as the data add2 are smooth. Furthermore, by (5) the Jacobian of the mapping is determined
by the monitor functiorp (x, ¢), and thus the mapping itself is non-singular, at least locally. However,
like the Lagrange method or other moving mesh methods based on mesh velocity, this method can suffer
from the tendency to produce increasingly skewed meshes.

Deformation method. The deformation map was introduced by Moser [10,26] in his study of volume
elements of a compact Riemannian manifold to prove the existenceCdf diffeomorphism with a
specified Jacobian. It has been adopted by Liao and coworkers [3,25,30] to define the deformation method
for generating adaptive moving meshes. In our notation, this mappiag (¢, r) is determined from the
system of equations [30]

ap .
V. =—— ing2,
(px;) o7
V x (px,)=0 onos2. (20)

It is then easy to see that the deformation method is a special case of the GCL methad=nitland
w=p.

Note that both the deformation method and the GCL method control the Jacbbighe mapping in
the same way, so the cell sizes produced by the two methods are the same. However, the extra freedon
given byu andw in the GCL method can be used to provide better control of the mesh behavior. For
instance, in practical computation itis generally preferable to have an irrotational mesh velpaibych
can result in less skewed grids. This can be achieved with the GCL method by chaosiig But, on
the other hand, an irrotational mesh velocity field is generally impossible with the deformation method,
since

N 1
V x (pv)=0 implies Vxv=——Vp x v, (1)
0

and thereforev x v does not vanish.

Like the GCL method, the deformation method satisfies the relation (5) for any dimension. Thus, the
Jacobian of the mapping stays positive, and the mapping itself is locally non-singular. This is a very
advantageous feature of the deformation method (and the GCL method) since for most methods it is
extremely difficult to prove that they produce non-singular coordinate transformations or meshes.

Static version. For many occasions, one needs to generate a mesh having a specified mesh topology
and a prescribed mesh density distributieiix). An example is to produce an initial adaptive mesh
which evenly distributes the interpolation error of the initial data. In this situation, we may define a time
dependent monitor function by

px,)=A—-t)+tm(x), 0<r<1,
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and then use continuation, integrating the mesh equations feer@ to 1. A variant of this procedure
can also be used to create the adaptive mesh at each time level.

3. Location based approaches
3.1. Mesh density and equidistribution in 1D

Consider the 1D (one-dimensional) case of an adaptive mapgigfrom a computational domain
2. to a physical domaiw2. If the mesh o2, is uniform theng—i measures the density of the mesh®n
Therefore, the mesh density is proportional to a prescribed funaetian > O if

z_&“ = const-m(x) ong. (12)
X

This is the so-called equidistribution principle. It is equivalent to satisfying

% ([m(x)]_l%) =0 on®,

which is exactly the Euler—Lagrange equation of the quadratic functional

2
Ipl€] = / [m(x>]‘1(%> dx. (13)
2

3.2. Variational approaches in higher dimensions

Knupp’s methods. A direct extension of the equidistribution principle (12) to higher dimensions would
require

0

% =K(x) ong, (14)

ax
whereK (x) is a prescribed x n matrix describing various properties of the mapping. This is an over-
determined system for the mappi&igr). Knupp [21,22] uses the least-squares principle to determine its
inversex (§) as the minimizer of the functional

Iknp[g] =/H% - K
2

where|| - | is typically the Frobenius norm of matrix. A detailed discussion on how to choose the matrix
K is given in [22]; see also [23] for a broader discussion on algebraic properties of the Jacobian matrix.
However, in addition to the Euler—Lagrange equatiog,) must satisfy appropriate boundary conditions
that specify the boundary correspondence betweeand £2.. It is far from clear how the boundary
conditions affect the level of the minimization fi,, and the overall behavior of the mapping.

2
dx, (15)
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Winslow’s variable diffusion functional. Suppose that higher mesh concentrations are desired in regions
with larger values of a given functiom (x) > 0. With the approach of Winslow [34], the mappi&gx)
is defined as the minimizer of

1
Ll = [ = 3 °(V8) (V) . (16)
Q i
It can be viewed as a multi-dimensional extension of the functional (13) for one dimension.

Thompson’s method.Following Winslow [33], Thompson et al. [32] also use a system of elliptic
differential equations for generating body-fitted meshes. They propose to use the Poisson equations

V2 = Pi(x), 17)

to control the mesh concentration and direction, wherel < i < n, are control functions. The system
can be interpreted as the Euler-Lagrange equation of the quadratic functional

Ithm[E]I/Z(WEHZ—PiSi) dx. (18)
P

The functional of Brackbill and SaltzmanBrackbill and Saltzman [4] develop a popular variational
method by combining mesh concentration, smoothness, and orthogonality. The functional associated
with mesh concentration is

Iodl£] = / w(x)J dr. (19)
2

However, there are two major difficulties associated with the combined functional: the ellipticity of
the Euler—Lagrange equation is not well characterized for all values of the weights that balance the
functionals associated with concentration, smoothness, and orthogonality; and the various terms are no
dimensionally homogeneous and must be re-scaled for each application; e.g., see [5] for more detailed
discussion of the features of the functional.

Harmonic mapping. Dvinsky [12] uses a harmonic mapping for the purpose of adaptive mesh
generation. Given am x n symmetric positive definite matrig (x) with ¢ = det(G), the mapping (x)

is defined as a harmonic mapping betwezi R" equipped with metricG and$2. ¢ R" equipped with

the Euclidean metric. This is equivalent to finding the minimizer of

Ihiml§] = / V&Y (VEN'GTH(VE) dx. (20)
o i

Brackbill’s direction control functional. Extending Winslow’s variable diffusion method [34] and the
harmonic mapping method, Brackbill [5] develops a functional which takes into consideration both mesh
concentration and mesh alignment (or direction control). The functional can be written in a more general
form (e.g., see [16,17])

Ionpl€] = / > (VE) G (V) d, (21)

2
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for suitable user defined functiods . These functions are generally required to be semi-positive definite.
Depending upon the desired mesh properties, they may be selected in a variety of ways. For instance,
if the mesh concentration is of primary concern, then it is natural to chGesew(x)I, which simply

leads to Winslow’s functional. In the special case= %EG, the functionall,,, reduces to a harmonic

mapping. If the mesh is expected to align with a certain prescribed direction(figld,, v3), thenG;

can be chosen such thewgi)TG;l(vgi) = |v; x V&2, If the mesh lines are expected to be highly
orthogonal, one may first define an orthogonal reference eshand then choose the monitdt;
such that V)" G 1(VE) = |VE x V&2, Itis often advantageous to use a combination of these control
functionals in order to achieve a balance among mesh properties.

Since the above methods are interpretable as variational generalizations of the one dimensional
equidistribution principle (12) or (13), it is not surprising that they share more or less the feature of
the one dimensional mesh adaptation, i.e., they have a certain degree of success to concentrate mes
points near the regions where the monitor function or the control function is large. However, due largely
to the complication arising from boundary constraints, the relation between the monitor function and
the mesh behavior is more complicated in higher dimensions. More importantly, most of these methods
are formulated on the basis of intuitive and/or geometrical considerations. As a consequence, the choice
of the monitor function, while being clearly defined for almost every method from such considerations,
can be ad hoc in the sense that the chosen monitor function does not minimize or is not even related
to a certain error bound. Furthermore, except for very special cases such as a harmonic mapping on &
convex domairg2,, the questions of existence and smoothness of a non-singular magginig multi-
dimensions are far from clear.

3.3. A new variational approach

In the afore-mentioned variational methods, the adaptive magggnigs determined directly from the
monitor functionG (x). G may be chosen with intent that an estimate or an indicator of the discretization
error is more or less evenly distributed over the adaptive mesh. However, as mentioned before, the precise
relation between the mesh and the monitor function (and therefore the discretization error) is unclear. In
practical computations one may observe a qualitative improvement in solution accuracy using the above
types of mesh generation, but it is unclear whether or not the mesh is optimal in terms of minimization of
the actual error. To deal with this issue, Huang [15] formulates a functional based more directly on error
distribution. He observes that the local error distributiofx ) for a discretization can often be written in
the form

E(x)=,/d§"J'GJdk,

where G(x) is ann x n symmetric positive definite matrix. For instanag, is the Hessian of the
interpolation function when thé&?-norm is used to measure the error for linear interpolation [11].
According to the equidistribution principle, an ideal adaptive mesh would Ha@e uniformly
distributed over the entire domain. This is equivalent to having

A=J Gy T=cI, (22)

for some constant. If 1;, 1 <i < n, are the eigenvalues of, (22) is true if and only if the following
two criteria are satisfied:
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Isotropy Criterion: Ay =---=A,; (23)
Uniformity Criterion: /1_[ A; = constant (24)
Noting that

Y hi=tr(a)=> (V&) Give

]_[x—det(A)—i
i 1 = _]Zg,

where g is the determinant oG and using the arithmetic-geometric mean inequality, Huang shows
that (23) is fulfilled if and only if the inequality

" < vE (N wsretve ) (25)

] ~
becomes an equality. Consequently, the isotropy criterion (23) may be satisfied approximately by
minimizing the integral of the difference of both sides of (25), or equivalently the functional

g1 =5 [ VE( X var 6 1vs) " ax. (26)
o i

The uniformity condition (24) is equivalent to satisfyidg/g = const, which in turn is satisfied if and
only if the inequality

Q/dg S [! (J\/\/gg)q dx]l/q’ (27)

whereg > 1is any real number, is an equality (see [13, p. 143]). Thus we may achieve (24) by minimizing
the functional

N&
I, = dx. 28
ot ! T (29
To balance between the goals of achieving both (23) and (24), the combined functional
nq/2
helt1=6 [ VE( Ve 61ve) " de + a—2mm [ L 29)
2 i 2 (T8t

is defined, where & 6 < 1 is a parameter. By (25) this functional is non-negative fod al[0, 1], and
whené € (0, 1/2), both terms inl,e,, are non-negative. By shifting the parameieone may adjust the
relative emphasis on mesh isotropy or mesh uniformity.

3.4. Boundary conditions

There are at least two natural ways to specify the boundary conditions for the admissible mapping in
the minimization of the above functionals. The first is to use the natural boundary conditions

VE -VE; =0 fori# . (30)
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This essentially requires that the mesh lines of congtafit= 1, . .., n) are orthogonal at the boundary.
The second is to use a lower-dimensional mesh equation to determine a Dirichlet type boundary
condition. In two dimensions, given a boundary segniéwif 02 and corresponding boundary segment
I, of 2., denote by and¢ the arc-length coordinates éf and I',, respectively. Then one requires that
the restriction of the mapping(x) on I", denoted by (¢), should satisfy

M(s)g—z = const (31)

where M (s) = ©7 Gt is the projection of the higher dimensional monitor function onto the boundary
tangential directiorr.

3.5. Moving mesh equation

The above variational approaches have only been described for generating one adaptive mesh for &
specified monitor function. When one solves time dependent problems, an adaptive mesh is needed for
each time step. One way to do this is to simply use the monitor function defined at each time level
to generate a corresponding adaptive mesh by the above procedure. This is generally not an efficient
procedure and can cause abrupt mesh change in time. To provide smoother mesh movement and increase
efficiency, Huang and Russell [16,17] use the gradient flow equation

o€ _ 181

ar T dE’
wherer > 0 is a time smoothing factor, to define the time dependent maggig). This is a parabolic
system whose limit a3 — 0 is the Euler—Lagrange equation for minimizing the functiohalBy

moderatingr, one may balance the effects of mesh adaptation and mesh movement in time. The, larger
the smoother the mesh moving, and the smalléhe more accurate the mesh adaptation.

(32)

4. Numerical examples

In this section, we present a short numerical comparison of four mesh adaptation methods: the GCL
method (8), Winslow’s method (16), the harmonic mapping method (20), and the method based on the
new functional (29). They are so selected partly because of our research interest and also because w
believe they are good representatives in each group, the location based methods or the velocity base
ones. But we would like to point out that many other methods, such as the MFE, the deformation
method, and Knupp’s Jacobian-weighted variational method, also have their potentials and deserve
further investigations.

We now briefly describe the implementations of the four methods. For the GCL method, we typically
take the computational doma2. to be the physical domaife and the initial mappinge (&, 0) = &.

Given a fixed mesh o, we approximatex (&, t) by continuous piecewise linear polynomials at each
time ¢. Solving the minimization problem fofy in (8) involves solving a system of ODEs for the
unknownsx (§;,7) at the nodal points of the mesh. The mappi@, ) is calculated by integrating

the ODEs with a standard time integrator, here a Singly Diagonally Implicit Runge—Kutta (SDIRK)
method [7].
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For the three location based methods, the formulations have been given in the above sections in terms
of the mappingé (x) from 2 to 2. If it is computed directly, one then needs to invert the mapping to
define the adaptive mesh ¢h from the fixed one o2, so it is often more convenient to instead derive
the equations for the inverse mappina¢t). This is done using the chain rule and various relationships
between the covariant and contravariant base vectors, e.g., see [14]. In the time dependent case it is the
straightforward to either solve for(€) iteratively or by integrating the moving mesh PDE (32) in time
to find the successively updated mesh.

We consider three examples with= (0, 1) x (0, 1) and the monitor function defined as follows:

Example A.
1 1. 2
px,y)=1+10exg —50{ y — 5~ Zsm(an) . (33)
Example B.

(8-

11 2 1 1 211\
(x—é—2C0i27Tl‘)) +(y—§—£—1$|n(2n't)) —(E) )

(35)

Examples A and B require generating an adaptive mesh for the specified monitor function. Example C
requires generating a moving adaptive mesh from the time dependent monitor function.

In all three examples, we set = 1, u = 0, and use the non-crossing boundary condition (9) for
the GCL method. For Winslow’s method, we set= p and use one-dimensional equidistribution (31)
for the boundary condition. For the harmonic mapping method, we choose the monitor fu@ction
0 * Diag(p, 1/p) * QT , whereQ = W(Vp, (Vp)1) is the matrix defined with the gradient vector
of p. For the method based on the new functional (29), we chGbsepl, g =2 andd = 0.1, and use
the boundary condition from (31). (The choiceqf 2 andd = 0.1 generally works well by suitably
emphasizing mesh uniformity — also see [15].) In all cases we use the computational dgmais?
and a uniform 40< 40 mesh on it.

The normalized quantity

Jp

Jopdx’

is used to measure how close the mesh distribution comes to equidistributing the monitor function. For
the GCL method, from (4) this benchmarking quantity should be 1 over the entire domain since it is
initially. For the method based on the new functional (29), we also E®R(@) = 1 in the limité — 0.

In the cases of Winslow’s method and the harmonic mapping method, there are no theoretical results on
the quantitative relation between the monitor function and the mesh density. Neverthetesty have
traditionally been used to qualitatively control the mesh density, ERgrovides some indication on

how reliably they perform.

px,y)=14+10 exp(—SO

Example C.

plx,y,t)=1+ lOeXL(—SO

EP(x) =
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It should be pointed out that although only the equidistribution meaSB(&) is considered here,
additional measures of other mesh properties such as the regularity should be included for the purpose
of convergence analysis, e.g., see [19] for asymptotic analysis for the interpolation error on adaptive
meshes.

We present in Fig. 1 the adaptive meshes obtained by the four moving mesh methods for Example A.
In this and the other examples, the region where the monitor fungtimkes its maximum values (and
an ideal mesh would be most concentrated) is highlighted as a thick curve in the figures. Note that in this
example all four methods produce the higher mesh concentration in regions of pigakres. We also
list in Table 1 the maximum and minimum valuesE®. The GCL method has the smallest deviation
from constant 1, followed by the method based on the new functional (29), then Winslow’s method, and
finally the harmonic mapping method. This is not surprising since the GCL method satisfies (4), and the

GCL Method Harmonic Mapping
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Fig. 1. Example A: The adaptive meshes obtained by the GCL method (top left), Winslow’s method (bottom left), the harmonic
mapping method (top right), and the method based on the new functional (bottom right).
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new functional takes into account the equidistribution & = p. For the method based on Winslow’s
functional and the harmonic mapping method, even though there is no quantitative relation b&tween
andp, EP s still reasonably constant. The methods all perform well in this case.

Table 1
Maximum and Minimum values dEP
Example A Example B
max(EP) min(EP) maxEP) min(EP)
GCL 1.059 0.823 1.096 0.899
Winslow 2.380 0.473 1.355 0.463
Harmonic 4,706 0.404 15.82 0.453
New Fnl 1.280 0.568 1.400 0.620
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Fig. 2. Example B: The adaptive meshes and the distributions of the benchmarking ga&nityained by the GCL method
(top left), Winslow’s method (bottom left), the harmonic mapping method (top right), and the method based on the new
functional (bottom right).
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Fig. 2 shows the results for Example B, and the extreme valudsPofire given in Table 1. In
this example, all the methods except the harmonic mapping method perform well, and the meshes are
concentrated around the places of highemlues. For the harmonic mapping, the circle with the highest
mesh concentration is slightly outside the circle with the maximuvalues, and the mesh in the central
region is much sparser than in the outer region althopdghkes approximately the same value 1 in
both places. This phenomenon has also been observed in [6], where it is attributed to the swvoalled
dimensional effectsf the method. However, the precise relation between the monitor function and the
mesh distribution is still unclear for this method. A detailed study of this issue is clearly important for
determining the breadth of practical applicability of the harmonic mapping method.

Finally, Figs. 3—6 show for Example C the adaptive meshes at different time instances for the four
methods. For Winslow's method and the new functional (29), the higher mesh concentration region
follows closely the evolution of functiop. The benchmarking quantity is always bounded between 0.54
and 1.86 for the case of Winslow’s method, and between 0.68 and 1.31 for the new functional. For the
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Fig. 3. Example C: The adaptive meshes and the distributions of the benchmarking gRralyained by the GCL method
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Fig. 4. Example C: The adaptive meshes and the distributions of the benchmarking gaBrttitained by Winslow’s method
atr =0,0.25,0.5,0.75.

harmonic mapping method, the mesh concentration region is again slightly away from the desired region,
although it moves in time at the same speeg as the case of the GCL method, however, even though

the EPis not far away from 1 (between 0.4 and 2.1 for all time), the adaptive mesh becomes increasingly
skew and the mesh concentration becomes slowly misplaced. In part, this difficulty can be overcome by
taking care to avoid the degeneracy of the mesh, e.g., either by changing the mesh connectivity [18] or
by generating the adaptive meshes at selected times by the static version of the GCL method.

5. Discussion

We have considered a variety of moving mesh methods which fall into two groups: (i) velocity based
methods such as the moving finite element method, the method based on the geometric conservatior
law, and the deformation method, and (ii) the location based methods, which include mainly Winslow’s
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Fig. 5. Example C: The adaptive meshes and the distributions of the benchmarking gE&ntibtained by the harmonic
mapping method at= 0, 0.25, 0.5, 0.75.

variable diffusion method, the harmonic mapping method, Brackbill's direction control method, and
the method based on a new functional developed recently in [15]. There are two major differences
between these two types of approaches. First, with the location based methods, the mesh behaviol
is controlled by a monitor function through a global integral of the mapping, which, except for the
new functional (29), can make it difficult to predict precisely the effects of monitor functions (and
consequently to devise a monitor function to realize the desired mesh behavior). For a velocity based
method and the functional (29), the relationship between the mesh density and the monitor function
is clearer, making it possible to construct adaptive meshes based on the error or residual distribution.
Second, with the velocity based methods the adaptive mesh is the result of time integration of the mesh
velocity fields. Thus, the mesh history for previous times will influence the mesh behavior at the current
time, and the moving mesh can easily become increasingly skewer, just as for the classical Lagrangian
method. In contrast, for the location based methods the adaptive mesh at a given time is essentially
determined by the monitor function at that time level. As a result, it is relatively stable over the long run.
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Fig. 6. Example C: The adaptive meshes and the distributions of the benchmarking gRratiyained by the method based
on the new functional at= 0, 0.25, 0.5, 0.75.

As well, it is possible to formulate the functionals with the location based approach to control various
mesh properties (such as orthogonality).

A brief numerical comparison of several of these moving mesh methods has been presented to
demonstrate these points.
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