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Abstract

A variety of approaches for generating moving adaptive methods are summarized and compared. They
fall into two groups: the velocity and the location based methods. The features, including the advanta
weakness, of each group are addressed. Brief numerical results are presented for several commo
approaches to highlight their features and performance.
 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Mesh adaptation plays an indispensable role in the efficient numerical simulation of many p
phenomenon. Among these we mention the occurrence of boundary and interior layers, blow-
moving interfaces. Over the past 20 years, with the development of various error estimate tech
use of mesh adaptation has become standard practice in most numerical softwares.

The moving mesh method, or ther-refinement method, has been relatively less developed than
mesh adaptation techniques. For this method, the adaptive mesh is generally constructed as t
under an appropriate mapping of a fixed mesh over an auxiliary domain. By suitably definin
mapping, one may control various mesh properties, e.g., mesh density and alignment, that are d
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for the underlining applications. Although this method has been less popular than the local refinement
(or h-refinement) method due to the difficulty in deriving suitable general governing equations for the
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adaptive mapping, it offers some distinct features useful in numerical computation. For examp
in principle simple to implement, and much of the software based on fixed mesh methods can b
extended to incorporate moving adaptive meshes. When there is no addition and deletion of grid
difficulties from restarting the time integration procedure can be avoided. Moreover mesh movem
naturally the salient feature of many time dependent problems, resulting in minimal numerical dif
and dispersion.

During the past 20 years, and particularly the past 10 years, there have been a number of tec
proposed for generating moving adaptive meshes. Miller and Miller [27], Carlson and Miller [8,9
Baines [1] developed moving finite element methods where nodal points are driven by the resi
the finite element approximation. Like Lynch [24], Johnson and Tezduyar [20] use an automatic
moving scheme in which the motion of the nodes is governed by the equations of linear elasticit
boundary conditions for these equations imposed by the motion of the fluid boundaries and inte
Oden et al. [29] and Bank and Smith [2] propose updating the position of grid points by local aver
Liao and coworkers [3,25,30] apply the concept of deformation map in differential geometry
generation of moving adaptive meshes. Winslow [33], Thompson et al. [32], Brackbill and Saltzm
Dvinsky [12], Brackbill [5], Knupp [21] and Knupp and Robidoux [23] propose various elliptic equa
or variational methods for defining the adaptive mapping. Recently, Huang [15] has proposed
mapping equation for which the relation with error distribution is clearly formulated. Finally
authors [7] have developed a type of moving mesh method based on the so-called geometric cons
law (GCL).

Most of these approaches can be classified into two groups. The first group is referred to asthe location
based methodbecause it controls directly the location of mesh points, or in the continuous sen
mappingx(ξ) from the auxiliary domain to the physical domain. A typical method in this group
variational method which defines the mapping as the minimizer of a functional. The second g
referred to asthe velocity based methodsince it targets directly the time derivative of the mappingx t (ξ),
or the mesh velocity. The second type of methods includes MFE, the deformation method, and th
method. For a velocity based method, the mesh equation is formulated for the mesh velocity,
mesh point location is obtained by integrating the velocity field.

In this paper, we will summarize and compare the features of these two types of methods. W
focus on good representatives in each group, the GCL method and several typical variational m
An early variational approach is the popular harmonic mapping method, and the GCL method red
the deformation method in a special case [7]. This paper is organized as follows. We first outline
velocity based methods in Section 2. In Section 3, we describe a number of variational formu
which have been considered in the past and the new variational formulation developed recently
Then we present several numerical examples in Section 4 to compare the adaptive meshes gen
the GCL method and the variational methods. Finally, conclusions are drawn in Section 5.

Throughout this paper,x = (x1, . . . , xn) andξ = (ξ1, . . . , ξn) are used to denote the variables in
physical domainΩ and computational domainΩc, respectively.J = ∂x

∂ξ
is the Jacobian matrix fo

mappingx(ξ) from Ωc to Ω , andJ = det(J ). Also, ∇ denotes the gradient operator with respec
the physical coordinatex.
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2. Velocity based approaches
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2.1. The classical Lagrangian method

In fluid dynamics, Lagrangian coordinates form a moving coordinate system that is used to follo
particles. More precisely, ifu(x, t) denotes the velocity of the fluid,ξ the reference coordinate of a flu
particle, andx(ξ , t) the position of the particle at timet , then the particle and therefore the Lagrang
coordinate lines evolve with

∂x

∂t
= u. (1)

A fortuitous property of Lagrangian coordinates is that convection terms are eliminated fro
governing equation. For a viscous flow without inflow and outflow boundaries, the incompressib
the fluid guarantees that the coordinate transformation between the Lagrangian and Eulerian coo
is non-singular. However, it is well-known that the classical Lagrangian coordinates are rarel
directly with the widely used discretization methods such as finite differences and finite ele
because the mesh generated by the Lagrangian method is often very skew.

2.2. The moving finite element method

The moving finite element method (MFE) developed by Miller and Miller [27,28] also genera
moving mesh through a mesh velocityxt . Specifically, suppose a time dependent physical problem

∂u

∂t
= Lu,

whereL is a spatial differential operator, is given. The continuous version of the MFE can be view
determining a solutionu(x(ξ , t), t) andx t (ξ , t) by minimizing theL2-norm of the residual involvingu
andx t over the entire space, viz.,

min
xt ,

Du
Dt

Imfe

[
x t ,

Du

Dt

]
≡

∫
Ω

(
Du

Dt
− ∇u · xt −Lu

)2

W dx,

where D
Dt

is the time derivative forξ fixed andW is a weight function. The classical version of MF
usesW = 1 [27,28] and the gradient weighted MFE (GWMFE) [8,9] usesW = 1/(1 + |∇u|2). In the
one dimensional case whereLu=H(x,u,ux) (e.g.,H = −uux for Burgers’ equation), MFE produces
mesh speedx t = −(∂H)/(∂ux), which is identical to or at least an approximation to the mesh spee
the Lagrangian method [1].

A nice feature of the MFE is that the mesh attempts to follow a path corresponding to the sm
weightedL2-norm of the residual of the discrete equations. In particular, if the physical PDE has a
state solution, then the steady state mesh is a locally optimal one that produces the least error a
meshes with the same connectivity. The difficulty with MFE is that the mesh equations resulting fr
minimization of functionalImfe[x t ,

Du
Dt

] can become degenerate, and its numerical computation req
careful regularization.
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2.3. The GCL method and the deformation method
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For any coordinate transformationx(ξ , t) from Ωc toΩ , the mesh speedx t and the time derivative o
the JacobianJ satisfy the identity

∇ · x t = 1

J

DJ

Dt
. (2)

This is the so-called geometric conservation law (GCL) [31].
We now consider the determination of the mappingx(ξ , t) through its time derivative. Assume th

we are given a monitor functionρ(x, t) > 0 which reflects difficulties in the numerical approximation
the solution of the underlying problem. We want the cell size (area) in the adaptive mesh to be in
proportional toρ(x, t) at each timet . To this end, we requirex(ξ , t) to satisfy

∇ · x t = − 1

ρ

Dρ

Dt
. (3)

By comparing Eqs. (3) and (2), it follows readily that

D

Dt
(ρJ )= 0, (4)

which implies that

ρJ = constant, (5)

over Ω for all the time if it is so initially. Note that (5) can be regarded as a multi-dimensi
generalization of the well-known one dimensional equidistribution principle (defined in Section 3.

By the chain rule, (3) can be rewritten as

∇ · (ρx t )+ ∂ρ

∂t
= 0. (6)

This equation is insufficient to determine the vector fieldxt . Motivation for finding supplementar
equations is provided by the classic Helmholtz Decomposition Theorem for vectors: A continuo
differentiable vector field can be resolved into the orthogonal sum of the gradient of a scalar field
curl of a vector field. Therefore,xt can be determined by specifying both its divergence through (6)
its curl. In practice, it is often desirable on physical grounds to have the adaptive mesh follow the
some given vector fieldu(x, t). Taking these considerations into account, we requirex(ξ , t) to satisfy

∇ ×w(xt − u)= 0, (7)

wherew > 0 is a weight function. This function, used only for defining (7), is different from those we
functions used for mesh adaptation. Different choices forw lead to different curl conditions (7) for th
vector fieldx t . In our computations we takew = 1 or w = ρ, but the possible utility of other choice
cannot be ruled out.

Since the divergence and curl of a vector field are orthogonal inL2, Eqs. (2) and (7) can be formulate
as the minimization problem of the functional

Igcl[x t ] = 1

2

∫
Ω

∣∣∣∣∇ · (ρxt )+ ∂ρ

∂t

∣∣∣∣
2

+
(
ρ

w

)2∣∣∇ ×w(xt − u)
∣∣2

dx, (8)
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where the weight(ρ/w)2 is chosen to make the functional invariant under scaling ofρ andw. Consider
the boundary condition
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xt · n = 0 on∂Ω, (9)

namely, a condition assuring no mesh points move in or out of the domain. Under this condition, i
difficult to see thatx t is the minimizer ofIgcl if and only if it is the solution of (6) and (7), cf. [7].

Eqs. (6), (7) and (9) form an elliptic system for the mesh velocityx t . Its solution exists and is smoo
as long as the data and∂Ω are smooth. Furthermore, by (5) the Jacobian of the mapping is determ
by the monitor functionρ(x, t), and thus the mapping itself is non-singular, at least locally. Howe
like the Lagrange method or other moving mesh methods based on mesh velocity, this method ca
from the tendency to produce increasingly skewed meshes.

Deformation method. The deformation map was introduced by Moser [10,26] in his study of vol
elements of a compact Riemannian manifold to prove the existence of aC1 diffeomorphism with a
specified Jacobian. It has been adopted by Liao and coworkers [3,25,30] to define the deformation
for generating adaptive moving meshes. In our notation, this mappingx = x(ξ , t) is determined from the
system of equations [30]

∇ · (ρx t )= −∂ρ

∂t
in Ω,

∇ × (ρx t )= 0 on∂Ω. (10)

It is then easy to see that the deformation method is a special case of the GCL method withu = 0 and
w = ρ.

Note that both the deformation method and the GCL method control the JacobianJ of the mapping in
the same way, so the cell sizes produced by the two methods are the same. However, the extra
given byu andw in the GCL method can be used to provide better control of the mesh behavio
instance, in practical computation it is generally preferable to have an irrotational mesh velocityxt , which
can result in less skewed grids. This can be achieved with the GCL method by choosingw = 1. But, on
the other hand, an irrotational mesh velocity field is generally impossible with the deformation m
since

∇ × (ρv)= 0 implies ∇ × v = − 1

ρ
∇ρ × v, (11)

and therefore∇ × v does not vanish.
Like the GCL method, the deformation method satisfies the relation (5) for any dimension. Th

Jacobian of the mapping stays positive, and the mapping itself is locally non-singular. This is
advantageous feature of the deformation method (and the GCL method) since for most metho
extremely difficult to prove that they produce non-singular coordinate transformations or meshes

Static version. For many occasions, one needs to generate a mesh having a specified mesh t
and a prescribed mesh density distributionm(x). An example is to produce an initial adaptive me
which evenly distributes the interpolation error of the initial data. In this situation, we may define
dependent monitor function by

ρ(x, t)= (1− t)+ t m(x), 0 � t � 1,
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and then use continuation, integrating the mesh equations fromt = 0 to 1. A variant of this procedure
can also be used to create the adaptive mesh at each time level.
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3. Location based approaches

3.1. Mesh density and equidistribution in 1D

Consider the 1D (one-dimensional) case of an adaptive mappingx(ξ) from a computational domai
Ωc to a physical domainΩ . If the mesh onΩc is uniform then∂ξ

∂x
measures the density of the mesh onΩ .

Therefore, the mesh density is proportional to a prescribed functionm(x) > 0 if

∂ξ

∂x
= const·m(x) onΩ. (12)

This is the so-called equidistribution principle. It is equivalent to satisfying

∂

∂x

([
m(x)

]−1∂ξ

∂x

)
= 0 onΩ,

which is exactly the Euler–Lagrange equation of the quadratic functional

I1D[ξ ] =
∫
Ω

[
m(x)

]−1
(
∂ξ

∂x

)2

dx. (13)

3.2. Variational approaches in higher dimensions

Knupp’s methods. A direct extension of the equidistribution principle (12) to higher dimensions w
require

∂ξ

∂x
=K(x) onΩ, (14)

whereK(x) is a prescribedn× n matrix describing various properties of the mapping. This is an o
determined system for the mappingξ(x). Knupp [21,22] uses the least-squares principle to determin
inversex(ξ) as the minimizer of the functional

Iknp[ξ ] =
∫
Ω

∥∥∥∥ ∂ξ∂x −K

∥∥∥∥
2

dx, (15)

where‖ · ‖ is typically the Frobenius norm of matrix. A detailed discussion on how to choose the m
K is given in [22]; see also [23] for a broader discussion on algebraic properties of the Jacobian
However, in addition to the Euler–Lagrange equation,x(ξ) must satisfy appropriate boundary conditio
that specify the boundary correspondence betweenΩ andΩc. It is far from clear how the boundar
conditions affect the level of the minimization ofIknp and the overall behavior of the mapping.
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Winslow’s variable diffusion functional.Suppose that higher mesh concentrations are desired in regions
with larger values of a given functionw(x) > 0. With the approach of Winslow [34], the mappingξ(x)
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is defined as the minimizer of

Iwin[ξ ] =
∫
Ω

1

w

∑
i

(∇ξi)
T (∇ξi)dx. (16)

It can be viewed as a multi-dimensional extension of the functional (13) for one dimension.

Thompson’s method.Following Winslow [33], Thompson et al. [32] also use a system of elli
differential equations for generating body-fitted meshes. They propose to use the Poisson equat

∇2ξi = Pi(x), (17)

to control the mesh concentration and direction, wherePi , 1� i � n, are control functions. The syste
can be interpreted as the Euler–Lagrange equation of the quadratic functional

Ithm[ξ ] =
∫
Ω

∑
i

(|∇ξi |2 − Piξi
)
dx. (18)

The functional of Brackbill and Saltzman.Brackbill and Saltzman [4] develop a popular variatio
method by combining mesh concentration, smoothness, and orthogonality. The functional ass
with mesh concentration is

Ibs[ξ ] =
∫
Ω

w(x)J dx. (19)

However, there are two major difficulties associated with the combined functional: the elliptic
the Euler–Lagrange equation is not well characterized for all values of the weights that balan
functionals associated with concentration, smoothness, and orthogonality; and the various term
dimensionally homogeneous and must be re-scaled for each application; e.g., see [5] for more
discussion of the features of the functional.

Harmonic mapping. Dvinsky [12] uses a harmonic mapping for the purpose of adaptive m
generation. Given ann× n symmetric positive definite matrixG(x) with g = det(G), the mappingξ(x)
is defined as a harmonic mapping betweenΩ ⊂ Rn equipped with metricG andΩc ⊂ Rn equipped with
the Euclidean metric. This is equivalent to finding the minimizer of

Ihrm[ξ ] =
∫
Ω

√
g

∑
i

(∇ξi)
T G−1(∇ξi)dx. (20)

Brackbill’s direction control functional. Extending Winslow’s variable diffusion method [34] and t
harmonic mapping method, Brackbill [5] develops a functional which takes into consideration both
concentration and mesh alignment (or direction control). The functional can be written in a more g
form (e.g., see [16,17])

Ibrb[ξ ] =
∫
Ω

∑
i

(∇ξi)
T G−1

i (∇ξi)dx, (21)



128 W. Cao et al. / Applied Numerical Mathematics 47 (2003) 121–138

for suitable user defined functionsGi . These functions are generally required to be semi-positive definite.
Depending upon the desired mesh properties, they may be selected in a variety of ways. For instance,
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if the mesh concentration is of primary concern, then it is natural to chooseGi = w(x)I , which simply
leads to Winslow’s functional. In the special caseGi = 1√

g
G, the functionalIbrb reduces to a harmoni

mapping. If the mesh is expected to align with a certain prescribed direction field(v1,v2,v3), thenGi

can be chosen such that(∇ξi)
T G−1

i (∇ξi) = |vi × ∇ξi|2. If the mesh lines are expected to be hig
orthogonal, one may first define an orthogonal reference meshξ̃(x) and then choose the monitorGi

such that(∇ξi)
T G−1

i (∇ξi)= |∇ ξ̃i ×∇ξi|2. It is often advantageous to use a combination of these co
functionals in order to achieve a balance among mesh properties.

Since the above methods are interpretable as variational generalizations of the one dime
equidistribution principle (12) or (13), it is not surprising that they share more or less the feat
the one dimensional mesh adaptation, i.e., they have a certain degree of success to concentr
points near the regions where the monitor function or the control function is large. However, due
to the complication arising from boundary constraints, the relation between the monitor functio
the mesh behavior is more complicated in higher dimensions. More importantly, most of these m
are formulated on the basis of intuitive and/or geometrical considerations. As a consequence, th
of the monitor function, while being clearly defined for almost every method from such considera
can be ad hoc in the sense that the chosen monitor function does not minimize or is not even
to a certain error bound. Furthermore, except for very special cases such as a harmonic mapp
convex domainΩc, the questions of existence and smoothness of a non-singular mappingx(ξ) in multi-
dimensions are far from clear.

3.3. A new variational approach

In the afore-mentioned variational methods, the adaptive mappingξ(x) is determined directly from th
monitor functionG(x). G may be chosen with intent that an estimate or an indicator of the discretiz
error is more or less evenly distributed over the adaptive mesh. However, as mentioned before, the
relation between the mesh and the monitor function (and therefore the discretization error) is unc
practical computations one may observe a qualitative improvement in solution accuracy using th
types of mesh generation, but it is unclear whether or not the mesh is optimal in terms of minimiza
the actual error. To deal with this issue, Huang [15] formulates a functional based more directly o
distribution. He observes that the local error distributionE(x) for a discretization can often be written
the form

E(x)=
√

dξ T J T GJ dξ ,

whereG(x) is an n × n symmetric positive definite matrix. For instance,G is the Hessian of the
interpolation function when theL2-norm is used to measure the error for linear interpolation [
According to the equidistribution principle, an ideal adaptive mesh would haveE(x) uniformly
distributed over the entire domain. This is equivalent to having

A≡ J−1G−1J −T = cI, (22)

for some constantc. If λi,1 � i � n, are the eigenvalues ofA, (22) is true if and only if the following
two criteria are satisfied:
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Isotropy Criterion: λ1 = · · · = λn; (23)√∏
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Uniformity Criterion: λi = constant. (24)

Noting that∑
i

λi = tr(A)=
∑
i

(∇ξ i
)T
G−1∇ξ i,

∏
i

λi = det(A)= 1

J 2g
,

whereg is the determinant ofG and using the arithmetic-geometric mean inequality, Huang sh
that (23) is fulfilled if and only if the inequality

nn/2

J
� √

g
(∑

i

(∇ξi)
T G−1∇ξi

)n/2
, (25)

becomes an equality. Consequently, the isotropy criterion (23) may be satisfied approxima
minimizing the integral of the difference of both sides of (25), or equivalently the functional

Iiso[ξ ] = 1

2

∫
Ω

√
g
(∑

i

(∇ξi)
T G−1∇ξi

)n/2
dx. (26)

The uniformity condition (24) is equivalent to satisfyingJ
√
g = const, which in turn is satisfied if an

only if the inequality∫
Ωc

dξ �
[∫
Ω

√
g

(J
√
g)q

dx
]1/q

, (27)

whereq > 1 is any real number, is an equality (see [13, p. 143]). Thus we may achieve (24) by minim
the functional

Iep[ξ ] =
∫
Ω

√
g

(J
√
g)q

dx. (28)

To balance between the goals of achieving both (23) and (24), the combined functional

Inew[ξ ] = θ

∫
Ω

√
g
(∑

i

(∇ξi)
T G−1∇ξi

)nq/2
dx + (1− 2θ)nnq/2

∫
Ω

√
g

(J
√
g )q

dx, (29)

is defined, where 0� θ � 1 is a parameter. By (25) this functional is non-negative for allθ ∈ [0,1], and
whenθ ∈ (0,1/2), both terms inInew are non-negative. By shifting the parameterθ , one may adjust th
relative emphasis on mesh isotropy or mesh uniformity.

3.4. Boundary conditions

There are at least two natural ways to specify the boundary conditions for the admissible map
the minimization of the above functionals. The first is to use the natural boundary conditions

∇ξi · ∇ξj = 0 for i �= j. (30)
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This essentially requires that the mesh lines of constantξi (i = 1, . . . , n) are orthogonal at the boundary.
The second is to use a lower-dimensional mesh equation to determine a Dirichlet type boundary
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condition. In two dimensions, given a boundary segmentΓ of ∂Ω and corresponding boundary segm
Γc of Ωc, denote bys andζ the arc-length coordinates ofΓ andΓc, respectively. Then one requires th
the restriction of the mappingξ(x) onΓ , denoted bys(ζ ), should satisfy

M(s)
∂s

∂ζ
= const, (31)

whereM(s) = τ TGτ is the projection of the higher dimensional monitor function onto the boun
tangential directionτ .

3.5. Moving mesh equation

The above variational approaches have only been described for generating one adaptive me
specified monitor function. When one solves time dependent problems, an adaptive mesh is ne
each time step. One way to do this is to simply use the monitor function defined at each tim
to generate a corresponding adaptive mesh by the above procedure. This is generally not an
procedure and can cause abrupt mesh change in time. To provide smoother mesh movement and
efficiency, Huang and Russell [16,17] use the gradient flow equation

∂ξ

∂t
= −1

τ

δI

δξ
, (32)

whereτ > 0 is a time smoothing factor, to define the time dependent mappingξ(x, t). This is a parabolic
system whose limit asτ → 0 is the Euler–Lagrange equation for minimizing the functionalI . By
moderatingτ , one may balance the effects of mesh adaptation and mesh movement in time. The lτ ,
the smoother the mesh moving, and the smallerτ , the more accurate the mesh adaptation.

4. Numerical examples

In this section, we present a short numerical comparison of four mesh adaptation methods: t
method (8), Winslow’s method (16), the harmonic mapping method (20), and the method based
new functional (29). They are so selected partly because of our research interest and also bec
believe they are good representatives in each group, the location based methods or the veloc
ones. But we would like to point out that many other methods, such as the MFE, the defor
method, and Knupp’s Jacobian-weighted variational method, also have their potentials and
further investigations.

We now briefly describe the implementations of the four methods. For the GCL method, we typ
take the computational domainΩc to be the physical domainΩ and the initial mappingx(ξ ,0) = ξ .
Given a fixed mesh onΩc, we approximatex(ξ , t) by continuous piecewise linear polynomials at ea
time t . Solving the minimization problem forIgcl in (8) involves solving a system of ODEs for th
unknownsx(ξ j , t) at the nodal points of the mesh. The mappingx(ξ , t) is calculated by integratin
the ODEs with a standard time integrator, here a Singly Diagonally Implicit Runge–Kutta (SD
method [7].
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For the three location based methods, the formulations have been given in the above sections in terms
of the mappingξ(x) from Ω to Ωc. If it is computed directly, one then needs to invert the mapping to
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define the adaptive mesh onΩ from the fixed one onΩc, so it is often more convenient to instead der
the equations for the inverse mappingx(ξ). This is done using the chain rule and various relations
between the covariant and contravariant base vectors, e.g., see [14]. In the time dependent case
straightforward to either solve forx(ξ) iteratively or by integrating the moving mesh PDE (32) in tim
to find the successively updated mesh.

We consider three examples withΩ = (0,1)× (0,1) and the monitor function defined as follows:

Example A.

ρ(x, y) = 1+ 10exp

(
−50

(
y − 1

2
− 1

4
sin(2πx)

)2)
. (33)

Example B.

ρ(x, y) = 1+ 10exp

(
−50

∣∣∣∣
(
x − 1

2

)2

+
(
y − 1

2

)2

−
(

1

4

)2∣∣∣∣
)
. (34)

Example C.

ρ(x, y, t) = 1+ 10exp

(
−50

∣∣∣∣
(
x − 1

2
− 1

4
cos(2πt)

)2

+
(
y − 1

2
− 1

4
sin(2πt)

)2

−
(

1

10

)2∣∣∣∣
)
.

(35)

Examples A and B require generating an adaptive mesh for the specified monitor function. Exa
requires generating a moving adaptive mesh from the time dependent monitor function.

In all three examples, we setw = 1, u = 0, and use the non-crossing boundary condition (9)
the GCL method. For Winslow’s method, we setw = ρ and use one-dimensional equidistribution (3
for the boundary condition. For the harmonic mapping method, we choose the monitor functioG =
Q ∗ Diag(ρ,1/ρ) ∗ QT , whereQ = 1

‖∇ρ‖2 (∇ρ, (∇ρ)⊥) is the matrix defined with the gradient vect
of ρ. For the method based on the new functional (29), we chooseG = ρI , q = 2 andθ = 0.1, and use
the boundary condition from (31). (The choice ofq = 2 andθ = 0.1 generally works well by suitabl
emphasizing mesh uniformity – also see [15].) In all cases we use the computational domainΩc = Ω

and a uniform 40× 40 mesh on it.
The normalized quantity

EP(x)= Jρ∫
Ω
ρ dx

,

is used to measure how close the mesh distribution comes to equidistributing the monitor functi
the GCL method, from (4) this benchmarking quantity should be 1 over the entire domain sinc
initially. For the method based on the new functional (29), we also haveEP(x) = 1 in the limit θ → 0.
In the cases of Winslow’s method and the harmonic mapping method, there are no theoretical re
the quantitative relation between the monitor function and the mesh density. Nevertheless,w andρ have
traditionally been used to qualitatively control the mesh density, andEP provides some indication o
how reliably they perform.
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It should be pointed out that although only the equidistribution measureEP(x) is considered here,
additional measures of other mesh properties such as the regularity should be included for the purpose

daptive

mple A.
d
t in this

ion
d, and
nd the

rmonic
of convergence analysis, e.g., see [19] for asymptotic analysis for the interpolation error on a
meshes.

We present in Fig. 1 the adaptive meshes obtained by the four moving mesh methods for Exa
In this and the other examples, the region where the monitor functionρ takes its maximum values (an
an ideal mesh would be most concentrated) is highlighted as a thick curve in the figures. Note tha
example all four methods produce the higher mesh concentration in regions of higherρ values. We also
list in Table 1 the maximum and minimum values ofEP. The GCL method has the smallest deviat
from constant 1, followed by the method based on the new functional (29), then Winslow’s metho
finally the harmonic mapping method. This is not surprising since the GCL method satisfies (4), a

Fig. 1. Example A: The adaptive meshes obtained by the GCL method (top left), Winslow’s method (bottom left), the ha
mapping method (top right), and the method based on the new functional (bottom right).
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new functional takes into account the equidistribution of
√
g = ρ. For the method based on Winslow’s

functional and the harmonic mapping method, even though there is no quantitative relation betweenJ

d
he new
andρ, EP is still reasonably constant. The methods all perform well in this case.

Table 1
Maximum and Minimum values ofEP

Example A Example B

max(EP) min(EP) max(EP) min(EP)

GCL 1.059 0.823 1.096 0.899
Winslow 2.380 0.473 1.355 0.463
Harmonic 4.706 0.404 15.82 0.453
New Fnl 1.280 0.568 1.400 0.620

Fig. 2. Example B: The adaptive meshes and the distributions of the benchmarking quantityEP obtained by the GCL metho
(top left), Winslow’s method (bottom left), the harmonic mapping method (top right), and the method based on t
functional (bottom right).
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Fig. 2 shows the results for Example B, and the extreme values ofEP are given in Table 1. In
this example, all the methods except the harmonic mapping method perform well, and the meshes are

est
ral
in

led
d the
nt for

e four
region
0.54
For the

d

concentrated around the places of higherρ values. For the harmonic mapping, the circle with the high
mesh concentration is slightly outside the circle with the maximumρ values, and the mesh in the cent
region is much sparser than in the outer region althoughρ takes approximately the same value 1
both places. This phenomenon has also been observed in [6], where it is attributed to the so-caltwo-
dimensional effectsof the method. However, the precise relation between the monitor function an
mesh distribution is still unclear for this method. A detailed study of this issue is clearly importa
determining the breadth of practical applicability of the harmonic mapping method.

Finally, Figs. 3–6 show for Example C the adaptive meshes at different time instances for th
methods. For Winslow’s method and the new functional (29), the higher mesh concentration
follows closely the evolution of functionρ. The benchmarking quantity is always bounded between
and 1.86 for the case of Winslow’s method, and between 0.68 and 1.31 for the new functional.

Fig. 3. Example C: The adaptive meshes and the distributions of the benchmarking quantityEP obtained by the GCL metho
at t = 0,0.25,0.5,0.75.
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region,
ugh
asingly
ome by
[18] or

based
ervation
slow’s
Fig. 4. Example C: The adaptive meshes and the distributions of the benchmarking quantityEP obtained by Winslow’s method
at t = 0,0.25,0.5,0.75.

harmonic mapping method, the mesh concentration region is again slightly away from the desired
although it moves in time at the same speed asρ. In the case of the GCL method, however, even tho
theEP is not far away from 1 (between 0.4 and 2.1 for all time), the adaptive mesh becomes incre
skew and the mesh concentration becomes slowly misplaced. In part, this difficulty can be overc
taking care to avoid the degeneracy of the mesh, e.g., either by changing the mesh connectivity
by generating the adaptive meshes at selected times by the static version of the GCL method.

5. Discussion

We have considered a variety of moving mesh methods which fall into two groups: (i) velocity
methods such as the moving finite element method, the method based on the geometric cons
law, and the deformation method, and (ii) the location based methods, which include mainly Win
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Fig. 5. Example C: The adaptive meshes and the distributions of the benchmarking quantityEP obtained by the harmoni
mapping method att = 0,0.25,0.5,0.75.

variable diffusion method, the harmonic mapping method, Brackbill’s direction control method
the method based on a new functional developed recently in [15]. There are two major diffe
between these two types of approaches. First, with the location based methods, the mesh
is controlled by a monitor function through a global integral of the mapping, which, except fo
new functional (29), can make it difficult to predict precisely the effects of monitor functions
consequently to devise a monitor function to realize the desired mesh behavior). For a velocity
method and the functional (29), the relationship between the mesh density and the monitor f
is clearer, making it possible to construct adaptive meshes based on the error or residual dist
Second, with the velocity based methods the adaptive mesh is the result of time integration of th
velocity fields. Thus, the mesh history for previous times will influence the mesh behavior at the c
time, and the moving mesh can easily become increasingly skewer, just as for the classical Lag
method. In contrast, for the location based methods the adaptive mesh at a given time is es
determined by the monitor function at that time level. As a result, it is relatively stable over the lon
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Fig. 6. Example C: The adaptive meshes and the distributions of the benchmarking quantityEP obtained by the method base
on the new functional att = 0,0.25,0.5,0.75.

As well, it is possible to formulate the functionals with the location based approach to control v
mesh properties (such as orthogonality).

A brief numerical comparison of several of these moving mesh methods has been prese
demonstrate these points.
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