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Abstract. Mesh adaptation is studied from the mesh control point of view. Two
principles, equidistribution and alignment, are obtained and found to be necessary and
sufficient for a complete control of the size, shape, and orientation of mesh elements.
A key component in these principles is the monitor function, a symmetric and positive
definite matrix used for specifying the mesh information. A monitor function is defined
based on interpolation error in a way with which an error bound is minimized on a mesh
satisfying the equidistribution and alignment conditions. Algorithms for generating
meshes satisfying the conditions are developed and two-dimensional numerical results
are presented.

Key words: Mesh adaptation; anisotropic mesh; equidistribution; alignment; error analysis; finite
element.

1 Introduction

Many partial differential equations (PDEs) arising from science and engineering have a
common feature that they have a small portion of the physical domain where small node
separations are required to resolve large solution variations. Examples include problems
having boundary layers, shock waves, ignition fronts, and sharp interfaces in fluid dynam-
ics, the combustion and heat transfer theory, and groundwater hydrodynamics. Numerical
solution of these PDEs using a uniform mesh can be formidable when the systems involve
more than two spatial dimensions since the number of mesh nodes required may become
large. To improve efficiency and accuracy of numerical solution it is natural to put more
mesh nodes in regions of large solution variation than the rest of the physical domain.
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With this basic idea of mesh adaptation, the number of mesh nodes required can be much
smaller; thus significant economies are gained.

Essential to mesh adaptation is the ability to control the size, shape, and orientation
of mesh elements throughout the domain. Traditionally, research has been concentrated
on isotropic mesh adaptation where mesh elements are adjusted only in size according to
an error estimate or indicator while their shape is kept close to being equilateral; e.g., see
books [2,15,27,52] and references therein. However, isotropic meshes often tend to use too
many elements in regions of large solution error. This is especially true when problems
have an anisotropic feature that the solution changes more significantly in one direction
than the others. Full benefits of mesh adaptation can only be taken by simultaneously
adjusting the size, shape, and orientation of mesh elements according to the behavior of
the physical solution. This often results in an anisotropic mesh, a mesh having elements
of large aspect ratio.

The well-known equidistribution principle [11, 20] has been playing an important role
in mesh adaptation. It entails finding a mesh which evenly distributes an error density
among the mesh elements. The principle has been serving as a guideline in developing mesh
adaptation strategies, and most existing adaptive mesh algorithms are more or less related
to it. Unfortunately, it is known [49] that the equidistribution principle is insufficient to
determine an anisotropic mesh in multi-dimensions. Great effort has been made in the
last decade to develop multi-dimensional generalizations of the equidistribution principle
and/or other principles for anisotropic mesh adaptation; e.g., see [4, 19, 32, 37, 41, 42, 50].
Given a physical domain Ω ⊂ <n (n ≥ 1), an adaptive mesh thereon can be gener-
ated as the image of a logical or computational mesh under a coordinate transformation
x = x(ξ) : Ωc → Ω, where Ωc is the computational domain artificially chosen for the pur-
pose of mesh generation. Denote by J = (∂x)/(∂ξ) the Jacobian matrix of the coordinate
transformation and J = det(J) its determinant. Motivated by a discrete constrained opti-
mization problem, Steinberg and Roache [50] define x = x(ξ) by minimizing the functional
∫

Ωc
J2dξ subject to the global implicit constraint

∫

Ωc
Jdξ = |Ω|, with intention to keep

element volume constant. These ideas of relating mesh adaptation functionals to equidis-
tribution and using global implicit constraints are studied extensively by Knupp and Ro-
bidoux [42]. Upon studying linear interpolation error on triangular elements, D’Azevedo
and Simpson [19] suggest that the coordinate transformation be chosen to minimize the
gradient of interpolation error and thus to satisfy

J
T H(v)T H(v)J = cI, in Ωc (1.1)

where c is a constant and H(v) denotes the Hessian of a function v. Huang and Sloan [37]
choose the coordinate transformation such that the function, when transformed into the
new coordinate, has the same change rate at every point and in every direction. This
results in

J
T

(

I + ∇v∇vT
)

J = cI in Ωc (1.2)

for some constant c. Huang [32] generalizes the ideas of [19, 37] to the case with an
arbitrary n × n symmetric and positive definite matrix M = M(x) (named a monitor
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function) and requires the coordinate transformation to satisfy

J
T MJ =

(

σ

|Ωc|

)
2
n

I, in Ωc, (1.3)

where σ =
∫

Ω ρ(x)dx, ρ =
√

det(M), and |Ωc| denotes the volume of Ωc. Here, the

constant (σ/|Ωc|)2/n results from compatibility and is obtained by taking determinant of
(1.3) and integrating it over Ωc. It is shown in [32] that equation (1.3) is equivalent to the
conditions

Jρ =
σ

|Ωc|
, (1.4)

1

n
tr

(

J
T MJ

)

= det
(

J
T MJ

)

1
n . (1.5)

As will be seen in §2, condition (1.4) is a multi-dimensional generalization of the equidis-
tribution principle while (1.5) is an alignment condition characterizing the shape and
orientation of mesh elements. A functional is constructed in [32] based on (1.4) and (1.5)
for determining the coordinate transformation needed in variational mesh adaptation.
Other works include Baines [4] and Knupp et al. [39,41]. Baines shows, using an algebraic
identity, that the least squares minimization of the residual of the divergence of a vector
field is equivalent to a least squares measure of equidistribution of the residual. Knupp et
al. [39,41] define the coordinate transformation by specifying the inverse Jacobian matrix
in the least squares sense:

∫

Ω
‖J−1 − S(x)‖2

F dx (1.6)

where ‖ · ‖F is the Frobenius matrix norm and S = S(x) is the user-specified Jacobian
matrix.

Despite this progress, the basic mathematical principles in anisotropic mesh adaptation
are not fully understood. For instance, it is unclear how the existing conditions such as
(1.4) and (1.5) and (1.6) are related to the control of mesh elements. It is neither clear
if these conditions, particularly the specification of the Jacobian matrix, over-determine
the coordinate transformation in the light of control of the size, shape, and orientation of
mesh elements.

The objective of this paper is to present an in-depth mathematical study of anisotropic
mesh adaptation from the mesh control point of view. Interestingly, using the singular
value decomposition of the Jacobian matrix we re-discover the equidistribution and align-
ment conditions (1.4) and (1.5), or (2.2) and (2.3) and show that they are necessary
and sufficient for a complete control of the size, shape, and orientation of mesh elements
throughout the physical domain. A key component in these conditions is the monitor func-
tion prescribed by the user for specifying the mesh information. The monitor function can
be defined based on error estimates and/or geometric and physical considerations. Indeed,
it is defined in Section 3 in such a way that an interpolation error bound is minimized
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on a mesh satisfying equidistribution and alignment conditions (1.4) and (1.5). It is also
shown that the conditions can serve as guidelines for developing algorithms for generating
adaptive anisotropic meshes.

An outline of the paper is as follows. In Section 2 the equidistribution and alignment
conditions are derived and measures for how closely they are satisfied by an existing
mesh are developed. In Section 3 the monitor function is defined based on interpolation
error. Algorithms for generating adaptive meshes satisfying the the equidistribution and
alignment conditions are studied in Section 4. Numerical results are presented in Section
5 for a selection of two-dimensional examples. Conclusions are drawn in Section 6.

2 Basic principles of mesh adaptation

2.1 Equidistribution and alignment

We consider mesh adaptation as a mathematical equivalent of the determination of a co-
ordinate transformation. That is, an adaptive mesh is viewed as the image of a uniform
reference mesh under a coordinate transformation x = x(ξ) from the computational do-
main Ωc to the physical domain Ω. In this continuous point of view mesh elements can
be idealized as ellipsoids, for which the size, shape, and orientation can easily be defined.
Indeed, for an ellipsoid the size is its volume, the shape is determined by the ratios be-
tween the lengths of the principal axes, and the orientation is controlled by the principal
directions.

We study mesh control or control of the size, shape, and orientation of mesh elements
from the continuous point of view. Our tool is the singular value decomposition (SVD)
of a matrix. Let J be the Jacobian matrix of x = x(ξ) : Ωc → Ω, i.e., J(ξ) = ∂x

∂ξ (ξ). By
linearizing the coordinate transformation about an arbitrary point, ξ0 ∈ Ωc, we have

x(ξ) = x(ξ0) + J(ξ0)(ξ − ξ0) + O(|ξ − ξ0|2).
Obviously, the behavior of the coordinate transformation around ξ0 is determined by J(ξ0).
Moreover, since a uniform mesh is used on Ωc, the element size, shape, and orientation in
a neighborhood of ξ0 are fully determined by J(ξ0). Denote the SVD of J(ξ0) by

J(ξ0) = UΣV T ,

where U and V are orthogonal matrices and Σ = diag(σ1, ..., σn), with the σi’s being the
singular values of J(ξ0). The mapping of a computational mesh element (ec, a ball) into
a physical element (e, an ellipsoid) under x(ξ) = x(ξ0) + J(ξ0)(ξ − ξ0) and the roles of
U , V , and Σ in the mapping are illustrated in Fig. 1. From the figure we can observe
that the orientation of e is determined by the left singular vectors U = [u1, ..., un], its
size and shape are controlled by the singular values Σ = diag(σ1, ..., σn), and V plays no
role in determining the size, shape, and orientation of e. Notice that ui and σ−2

i form the
eigenvectors and eigenvalues of matrix J

−T
J

−1 , viz.,

J
−T

J
−1 = UΣ−2UT ,
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Figure 1: A computational element (ec, a ball) is mapped into a physical mesh element (e, an ellipsoid) under
x = x(ξ0) + J(ξ0)(ξ − ξ0) : Ωc → Ω. The figure shows the two-dimensional case with U = [u1, u2] and
V = [v1, v2] and with x(ξ0) and ξ0 being taken to be zero.

and their determination is equivalent to determination of the matrix J
−T

J
−1. Thus, a

complete control of the element can be realized by specifying the matrix. One choice is

J
−T

J
−1 =

(

σ

|Ωc|

)

−
2
n

M(x), (2.1)

where M = M(x), the so-called monitor function, is a user-specified, n×n symmetric and
positive definite matrix and

σ =

∫

Ω
ρ(x)dx, ρ =

√

det(M).

(Note that equation (2.1) is equivalent to equation (1.3).) We assume for the moment
that M(x) is given. It is shown in §3 that the monitor function can be chosen based on
interpolation error estimates. The function ρ = ρ(x) will hereafter be referred to as the
adaptation function.

When the coordinate transformation satisfies relation (2.1), the element size, shape,
and orientation are completely determined by M = M(x) throughout the domain. To see
this, we first take the determinant of both sides of (2.1). It follows that

J−2 =

(

σ

|Ωc|

)

−2

ρ2

or
ρJ =

σ

|Ωc|
, (2.2)
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where J = det(J). Equation (2.2) is a multi-dimensional generalization of the well-known
equidistribution principle [20]. It implies that J , characterizing the size of mesh elements,
is small in the region of large ρ and is large in the region of small ρ.

Next, we rewrite (2.1) into equation (1.3). From it we can clearly see that relation (2.1)
requires all of the eigenvalues of matrix J

T MJ to be the same and equal to the constant
(σ/|Ωc|)

2
n . The requirement can be satisfied by asking the eigenvalues to be equal to each

other and one of their products to be constant. The second condition is fulfilled in the
equidistribution condition (2.2), upon observing that (ρJ)2 = det(JT MJ) is equal to the
product of the eigenvalues. On the other hand, the first condition can be formulated as
follows using the arithmetic-geometric mean inequality, which states that the arithmetic
mean of any n positive numbers is greater than or equal to their geometric mean, with
equality if and only if they are equal to each other. Noticing that the sum and product
of the eigenvalues of a matrix are equal to its trace and determinant, respectively, we
conclude that the equation

1

n
tr

(

J
T MJ

)

= det
(

J
T MJ

)

1
n (2.3)

implies that the eigenvalues of J
T MJ are equal to each other. After some simple algebraic

manipulation it can be shown that (2.3) is equivalent to

J
−T

J
−1 = θ(x)M(x) (2.4)

for a scalar but undetermined function θ = θ(x). Equation (2.4) implies that the eigenvec-
tors and the ratios between (or relative magnitude of) the eigenvalues of matrix J

−T
J

−1

are determined by monitor function M = M(x). Recalling that the eigenvectors and rela-
tive magnitude of the eigenvalues of matrix J

−T
J

−1 characterize the shape and orientation
of the mesh elements, we can conclude that the shape and orientation, or the alignment
in short, of the mesh elements are controlled by the monitor function M = M(x) through
condition (2.3). For this reason, condition (2.3) will hereafter be referred to as the align-
ment condition.

In summary, we have seen that given a monitor function M = M(x), the equidistribu-
tion and alignment conditions (2.2) and (2.3) are necessary and sufficient for a complete
control of the size, shape, and orientation of mesh elements throughout the physical do-
main.

2.2 Measures of equidistribution and alignment

It is useful to know how closely the equidistribution and alignment conditions (2.2) and
(2.3) are satisfied by an existing coordinate transformation for a given monitor function
M = M(x). We use the quality measures defined in [34]. Indeed, from (2.2) we define the
equidistribution measure as

Qeq(x) =
ρJ |Ωc|

σ
. (2.5)
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It can be deduced immediately from the definition that

Qeq(x) > 0 and
1

|Ωc|

∫

Ωc

Qeqdξ = 1.

Thus, maxx Qeq(x) = 1 if and only if the coordinate transformation satisfies the equidis-
tribution condition (2.2). Moreover, the larger maxx Qeq is, the more the function ρJ
oscillates and in this sense, the farther the coordinate transformation is from satisfying
(2.2).

On the other hand, from (2.3) we define the alignment measure as

Qali(x) =





tr
(

J
T MJ

)

n det
(

J
T MJ

)
1
n





n
2(n−1)

. (2.6)

The arithmetic-geometric mean inequality implies

Qali(x) ≥ 1,

with Qali(x) = 1 if and only if the alignment condition (2.3) is satisfied exactly. The larger
Qali(x) is, the more the eigenvalues of J

T MJ are different from each other and therefore
the farther the alignment condition (2.3) is from being satisfied.

Note that the definition (2.6) is based on the Jacobian matrix J . The alignment
measure can also be defined based on its inverse, J

−1, viz.,

Q̂ali(x) =





tr
(

J
−1M−1

J
−T

)

n det
(

J
−1M−1J

−T
)

1
n





n
2(n−1)

. (2.7)

Similarly,
Q̂ali(x) ≥ 1,

and Q̂ali(x) = 1 if and only if the alignment condition (2.3) is satisfied exactly.
We observed that the quantities Qali and Q̂ali and the alignment condition (2.3) are

invariant if M is multiplied by a scalar function θ = θ(x), i.e., M → θ(x)M . This
invariance property is used in several places in the rest of the paper but without mentioning
it explicitly.

In practice it is often useful to know how skewed the mesh elements are. This purely
geometric property can be measured using the alignment measures defined above but with
M(x) being taken to be the identity matrix. This leads to the geometric measures,

Qgeo(x) =





tr
(

J
T
J

)

n det
(

J
T
J

)
1
n





n
2(n−1)

, (2.8)

Q̂geo(x) =





tr
(

J
−1

J
−T

)

n det
(

J
−1

J
−T

)
1
n





n
2(n−1)

. (2.9)
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Like the alignment measures, they have the property

Qgeo(x) ≥ 1, Q̂geo(x) ≥ 1,

and Qgeo(x) = 1 or Q̂geo(x) = 1 if and only if the mesh elements are equilateral. Moreover,
it has been shown in [34] that they are equivalent to the aspect ratio of the mesh elements.

The relations between the alignment and geometric measures can be developed as
follows. Denote the eigen-decomposition of M by

M = Qdiag(λ1, ..., λn)QT .

Let

(QT
J)T = [a1, ..., an].

Then,

tr
(

J
T MJ

)

= tr
(

(QT
J)T diag(λ1, ..., λn)(QT

J)
)

=
∑

i

λi‖ai‖2,

where ‖ · ‖ denotes the l2 norm of a vector or a matrix. On the other hand,

tr
(

J
T
J

)

= tr
(

(QT
J)T (QT

J)
)

=
∑

i

‖ai‖2 =
∑

i

λ−1
i (λi‖ai‖2).

Thus,

tr
(

J
T
J

)

≤ max
i

λ−1
i ·

∑

i

λi‖ai‖2 = ‖M−1‖ · tr
(

J
T MJ

)

,

and

tr
(

J
T
J

)

≥ min
i

λ−1
i ·

∑

i

λi‖ai‖2 =
1

maxi λi
·
∑

i

λi‖ai‖2 = ‖M‖−1 · tr
(

J
T MJ

)

.

Combining these results, we get

‖M‖−1 · tr
(

J
T MJ

)

≤ tr
(

J
T
J

)

≤ ‖M−1‖ · tr
(

J
T MJ

)

.

From the definitions of the alignment and geometric measures it follows that

Q
2(n−1)

n

ali

‖M‖−1

ρ−
2
n

≤ Q
2(n−1)

n
geo ≤ Q

2(n−1)
n

ali

‖M−1‖
ρ−

2
n

, (2.10)

where we recall that ρ =
√

det(M). Similarly we have

Q̂
2(n−1)

n

ali

‖M−1‖−1

ρ
2
n

≤ Q̂
2(n−1)

n
geo ≤ Q̂

2(n−1)
n

ali

‖M‖
ρ

2
n

. (2.11)
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3 Monitor function

From the previous section we have seen that the monitor function M = M(x) plays a
role of controlling element size, shape, and orientation through the equidistribution and
alignment conditions (2.2) and (2.3). Generally speaking, the monitor function can be
defined based on error estimates, physical or geometric considerations; e.g. see [14,23,36,
43]. In this section we define the monitor function in a way that the interpolation error has
a lower upper-bound on a coordinate transformation satisfying (2.2) and (2.3). The same
approach has been employed in [34, 38], and the obtained results are similar, except for
the anisotropic case where the gradient of the linear interpolation error is used. For this
case, the present result requires that the mesh satisfy the equidistribution and alignment
conditions (2.2) and (2.3) whereas those in [34, 38] require that the mesh satisfy the two
conditions as well as the geometric condition (3.18). Generally speaking, a mesh cannot
simultaneously satisfy all three conditions since the alignment condition is contradictory
to the geometric one. Thus, the present result is an improvement over those in [34,38] for
the anisotropic case with gradient error of linear interpolation.

3.1 Interpolation error estimates

In this subsection we describe the error estimates for polynomial preserving interpolation
on simplicial elements. We begin by introducing some notation. Assume that an affine
family of triangulations {Th} is given on the physical domain Ω. Then for each element K,
there exists an invertible affine mapping FK : K̂ → K such that K = FK(K̂), where K̂ is
the reference element chosen to be equilateral and have the unitary volume. In the literature
this type of element is often referred to as simplicial elements. The norm and semi-norm
of the Sobolev space Wm,p(K) are denoted by ‖ · ‖W m,p(K) and | · |W m,p(K), respectively.

The scaled semi-norm of Wm,p(K) is defined as 〈·〉W m,p(K) ≡ |K|−1/p| · |W m,p(K), where

|K| is the volume of K. Obviously, 〈v〉W m,p(K) is an Lp average of v(m) on K. Hereafter,
C denotes a generic positive constant.

The element-wise error estimates in the following theorem are developed in [34] using
the standard theory of interpolation for finite elements (e.g., see [17]).

Theorem 3.1. Let (K̂, P̂ , Σ̂) be a finite element, where K̂ is the reference element, P̂
is a finite-dimensional linear space of functions defined on K̂, and Σ̂ is a set of degrees
of freedom. Let s be the greatest order of partial derivatives occurring in Σ̂. For some
integers m, k, and l: 0 ≤ m ≤ l ≤ k + 1, and some numbers p, q ∈ [1,∞], if

W l,p(K̂) ↪→ Cs(K̂), (3.1)

W l,p(K̂) ↪→ Wm,q(K̂), (3.2)

Pk(K̂) ⊂ P̂ ⊂ Wm,q(K̂), (3.3)

then there exists a constant C = C(K̂, P̂ , Σ̂) such that, for all affine-equivalent finite
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elements (K, PK , ΣK),

|v − Πk,Kv|W m,q(K) ≤ C‖(F ′

K)−1‖m · |det(F
′

K)|
1
q · 〈v〉W l,p(K) (3.4)

for v ∈ W l,p(K),

|v −Πk,Kv|W m,q(K) ≤ C‖(F ′

K)−1‖m · ‖(F ′

K)‖l · |det(F
′

K)|
1
q ·

〈

tr
(

(F
′

K)T∇v∇vT F
′

K

)〉
1
2

L
p
2 (K)

(3.5)
for v ∈ W 1,p(K), and

|v − Πk,Kv|W m,q(K)

≤ C‖(F ′

K)−1‖m · ‖F ′

K‖l−2 · |det(F
′

K)|
1
q ·

〈

tr
(

(F
′

K)T
∣

∣

∣
H

(

Dl−2v
)
∣

∣

∣
F

′

K

)〉

Lp(K)
(3.6)

for v ∈ W l,p(K) with l ≥ 2. Here, Πk,K denotes the kth-degree PK-interpolation operator
on K; det(·) and tr(·) denote the determinant and trace of a matrix, respectively;

|H(Dl−2v)| ≡
∑

i1,...,il−2

∣

∣

∣

∣

H

(

∂l−2v

∂xi1 · · · ∂xil−2

)∣

∣

∣

∣

; (3.7)

H(·) is the Hessian of a function; and |H(·)| ≡ Qdiag(|λ1|, ..., |λn|)QT for a given eigen-
decomposition H(·) = Qdiag(λ1, ..., λn)QT .

Remark 3.1. The numbers l and p are related to the regularity of the considered func-
tions. The theorem holds for kth degree interpolation polynomials with k ≥ 0 and thus
for high order simplicial finite elements. Since the elements are affine, only the Jacobian
of the map FK , F

′

K , appears in the error estimates. The sufficient conditions for (3.1) and
(3.2) can be derived from the Embedding Theorem for Sobolev spaces (e.g., see [1]). For
the widely used case of Lagrange interpolation (s = 0), the conditions 0 ≤ m ≤ l ≤ k + 1,
1 ≤ q ≤ p, and l > n/p for p > 1 or l ≥ n for p = 1 are sufficient for (3.1) and (3.2) to
hold.

Remark 3.2. The estimate (3.4) is isotropic whereas the estimates (3.5) and (3.6) are
anisotropic. This is because function derivatives are directly coupled in the latter two es-
timates with F

′

K , the Jacobian matrix which characterizes the size, shape, and orientation
of K.

Remark 3.3. The estimate (3.6) still holds if (3.7) is replaced with a “smaller” matrix

|H(Dl−2v)| ≡
⋂

i1,...,il−2

∣

∣

∣

∣

H

(

∂l−2v

∂xi1 · · · ∂xil−2

)∣

∣

∣

∣

, (3.8)

where ∩ denotes a certain matrix intersection operator. The purpose of introducing such an
intersection operator is to approximate the biggest ellipsoid contained in the intersection
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Figure 2: Illustration of the intersection of two ellipses.

of all the ellipsoids corresponding to the symmetric and semi-positive definite matrices
S1, ..., Sm. An approach is given in [16] to find an approximation of the biggest ellipsoid.
We propose here a slightly different approach. We first consider two matrices S1 and S2,
with S1 being non-singular. In this case, there exists a non-singular matrix P such that
P T S1P = I and P T S2P = Σ ≡ diag(σ1, ..., σn). The intersection of S1 and S2 can be
defined as

S1 ∩ S2 = P−T diag(max{1, σ1}, ...,max{1, σn})P−1.

It is easy to show that the ellipsoid corresponding to matrix S1∩S2 is the biggest ellipsoid
inscribed in the intersection of the ellipsoids corresponding to S1 and S2. The intersection
is illustrated in Fig. 2. When both S1 and S2 are singular, the intersection can be defined
by perturbating S1 with a small positive number. For the case with more than two
matrices, the intersection can be defined by adding a matrix each time. For instance,
S1 ∩ S2 ∩ S3 = (S1 ∩ S2) ∩ S3. For more than two matrices, the ellipsoid corresponding
to matrix

⋂

i
Si is contained in the intersection of the ellipsoids corresponding to S1, ..., Sm

but it is unclear that the ellipsoid is the biggest inscribed one.

3.2 Continuous form of error estimates

We now proceed with the continuous form of the error estimates. A continuous form
of the estimates is needed for defining the monitor function for the equidistribution and
alignment conditions described in the previous section. We first define a global coordinate
transformation. To this end, we assume that an affine, quasi-uniform mesh Tc,h can be
defined on Ω such that it has the same connectivity as Th does. In the following, the
domain Ω will be viewed as the “computational” domain, i.e., Ωc ≡ Ω, when associated
with Tc,h. The corresponding coordinate will be denoted by ξ. Then, a piecewise linear,
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Figure 3: The definition of the piecewise linear coordinate transformation x = x(ξ) is illustrated.

global coordinate transformation x = x(ξ) : Ωc → Ω can be defined as

x(ξ) := FK(F−1
Kc

(ξ)), ∀ξ ∈ Kc, ∀Kc ∈ Tc,h, (3.9)

where K and Kc are the corresponding elements on Ω and Ωc and FK : K̂ → K and
FKc : K̂c → K are linear mappings. The definition is illustrated in Fig. 3.

The assumption that Tc,h is quasi-uniform and has the same connectivity as Th implies

|det(F
′

Kc
)| = O

(

N−1
)

, ‖F ′

Kc
‖ = O

(

N−
1
n

)

, ∀Kc ∈ Tc,h

where N is the number of elements in Th. From the definition of x = x(ξ), we have

F
′

K = J · F ′

Kc
, |K| = O

(

N−1J
)

, ‖F ′

K‖ = O
(

N−
1
n ‖J‖

)

, (3.10)

where J = (∂x)/(∂ξ) and J = det(J).
Using these relations, taking the qth power on both sides of (3.4), (3.5), and (3.6), and

summing them over all the elements, we obtain

|v − Πkv|qW m,q(Ω) ≤ CN−
(l−m)q

n

∑

K

|K| · ‖J−1‖mq · ‖J‖lq ·
(

1

|K|

∫

K
‖Dlv‖p

pdx

)
q

p

(3.11)

for v ∈ W l,p(Ω),

|v − Πkv|qW m,q(Ω) ≤ CN−
(1−m)q

n

∑

K

|K| · ‖J−1‖mq ·
(

1

|K|

∫

K

(

tr
(

J
T∇v∇vT

J
))

p

2 dx

)
q

p

(3.12)
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for v ∈ W 1,p(Ω), and

|v − Πkv|qW m,q(Ω) ≤ CN−
(l−m)q

n

∑

K

|K| · ‖J−1‖mq · ‖J‖(l−2)q ×

(

1

|K|

∫

K

(

tr
(

J
T

∣

∣

∣
H

(

Dl−2v
)
∣

∣

∣
J

))p
dx

)
q

p

(3.13)

for v ∈ W l,p(Ω) with l ≥ 2. In (3.11), ‖ · ‖p denotes the lp matrix norm.

Then one can easily see that the right-hand-side term of (3.11) has the limit

CN−
(l−m)q

n

∫

Ω
‖J−1‖mq · ‖J‖lq · ‖Dlv‖q

pdx

as maxK diam(K) → 0. For notational simplicity, this asymptotical bound is denoted by

|v − Πkv|qW m,q(Ω)

<→ CN−
(l−m)q

n

∫

Ω
‖J−1‖mq · ‖J‖lq · ‖Dlv‖q

pdx (3.14)

for v ∈ W l,p(Ω). Similarly, from (3.12) and (3.13) we have

|v − Πkv|qW m,q(Ω)

<→ CN−
(1−m)q

n

∫

Ω
‖J−1‖mq

(

tr
(

J
T∇v∇vT

J
))

q

2 dx (3.15)

for v ∈ W 1,p(Ω) and

|v − Πkv|qW m,q(Ω)

<→ CN−
(l−m)q

n

∫

Ω
‖J−1‖mq · ‖J‖(l−2)q ·

(

tr
(

J
T

∣

∣

∣
H

(

Dl−2v
)
∣

∣

∣
J

))q
dx

(3.16)
for v ∈ W l,p(Ω) with l ≥ 2.

The estimates (3.14), (3.15), and (3.16) have been obtained for the piecewise linear
coordinate transformation x = x(ξ) defined in (3.9) over simplicial mesh elements. Strictly
speaking, these results can only be used for generation of meshes with simplicial elements.
Nevertheless, we note that the bounds given in (3.14), (3.15), and (3.16) are asymptotic in
the limit of maxK diam(K) → 0. It is reasonable to expect that these asymptotic bounds
also hold for other types of elements and coordinate transformations. For this reason, the
monitor functions defined based on (3.14), (3.15), and (3.16) will be used for generating
all types of adaptive mesh.

3.3 Monitor function

The monitor function is defined for three cases, the isotropic case and the anisotropic cases
with l = 1 and l = 2.
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3.3.1 The isotropic case

In this case, the monitor function M = M(x) is defined based on the estimate (3.14). To
be able to define a positive M , we regularize (3.14) with a to-be-determined parameter
αiso > 0; viz.,

|v − Πkv|qW m,q(Ω)

<→ CN−
(l−m)q

n

∫

Ω
‖J−1‖mq · ‖J‖lq ·

(

αiso + ‖Dlv‖p

)q
dx

= CN−
(l−m)q

n αq
iso

∫

Ω
‖J−1‖mq · ‖J‖lq ·

(

1 +
1

αiso
‖Dlv‖p

)q

dx.

From the definitions of the geometric measures, (2.8) and (2.9) it follows that

‖J‖ ≤ ‖J‖F =

√

tr(JT
J) =

√
nQ

n−1
n

geo · |J | 1
n ,

‖J−1‖ ≤ ‖J−1‖F =

√

tr(J−1
J

−T ) =
√

nQ̂
n−1

n
geo · |J |− 1

n .

Inserting these results into the above estimate, we get

|v − Πkv|qW m,q(Ω)

<→ CN−
(l−m)q

n αq
iso

∫

Ω
Q̂

mq(n−1)
n

geo · Q
lq(n−1)

n
geo · |J |

q(l−m)
n ·

(

1 +
1

αiso
‖Dlv‖p

)q

dx. (3.17)

The monitor function is defined such that the bound given in (3.17) is made as low
as possible on a coordinate transformation satisfying equidistribution and alignment con-
ditions (2.2) and (2.3). To this end, we note that the geometric measures Qgeo (≥ 1)
and Q̂geo (≥ 1) are involved in the bound given in (3.17). To make the bound as low as
possible, we should require that a coordinate transformation satisfying (2.2) and (2.3) also
satisfy Qgeo = 1 and Q̂geo = 1; or equivalently,

1

n
tr

(

J
T
J

)

= det
(

J
T
J

)

1
n . (3.18)

Comparing this with the alignment condition (2.3) yields

M = θ(x)I (3.19)

for some scalar function θ = θ(x). The error bound becomes

|v − Πkv|qW m,q(Ω)

<→ CN−
(l−m)q

n αq
iso

∫

Ω
|J |

q(l−m)
n ·

(

1 +
1

αiso
‖Dlv‖p

)q

dx. (3.20)

Next we determine the monitor function in the form (3.19) through the adaptation
function ρ =

√

det(M). The tool is the following theorem on the optimality of equidis-
tributing meshes (or coordinate transformations).
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Theorem 3.2. Given a real number s > 0 and a positive function ρ = ρ(x) defined on Ω,
then

I[ξ] ≡
∫

Ω
ρ(|J |ρ)sdx ≥ σ

(

σ

|Ωc|

)s

, (3.21)

where σ =
∫

Ω ρdx, for all invertible coordinate transformations ξ = ξ(x) : Ω → Ωc. The
lower bound is attained on a mesh satisfying equidistribution condition (2.2).

Proof. Inequality (3.21) follows from the inequality

(
∫

Ω

ρ

σ
(|J |ρ)sdx

)
1
s

≥
(

∫

Ω

ρ

σ
(|J |ρ)−1dx

)

−1

=
σ

|Ωc|

for any s > 0. It is easy to verify that a mesh satisfying the equidistribution condition
(2.2) gives the lower bound.

From Theorem 3.2, it is clear that the right-hand-side term of (3.20) attains its lowest
bound on an equidistributing mesh if the adaptation function ρ = ρ(x) is defined such
that

|J |
q(l−m)

n ·
(

1 +
1

αiso
‖Dlv‖p

)q

= ρ(|J |ρ)s

for some number s > 0. Comparing the exponents of |J | on both sides, we obtain s =
q(l − m)/n and

ρ = ρiso ≡
(

1 +
1

αiso
‖Dlv‖p

)
nq

n+q(l−m)

. (3.22)

From (3.19) and the definition ρ =
√

det(M), the monitor function is determined as

M = Miso ≡
(

1 +
1

αiso
‖Dlv‖p

)
2q

n+q(l−m)

I. (3.23)

It remains to define αiso, which is often referred to as the intensity parameter in the
context of mesh adaptation since it controls the intensity of mesh concentration. It is
suggested in [32] that αiso be chosen such that (i) the monitor function Miso is invariant
under the scaling transformation of v and (ii) σ ≡

∫

Ω ρisodx ≤ C for some constant C.
For the current situation,

σ ≡
∫

Ω
ρiso(x)dx

≤ C1

∫

Ω

[

1 + α
−

nq

n+q(l−m)

iso ‖Dlv‖
nq

n+q(l−m)
p

]

dx

= C1

[

|Ω| + α
−

nq

n+q(l−m)

iso

∫

Ω
‖Dlv‖

nq

n+q(l−m)
p dx

]

.
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By choosing

αiso =

[

1

|Ω|

∫

Ω
‖Dlv‖

nq

n+q(l−m)
p dx

]

n+q(l−m)
nq

, (3.24)

we have σ ≤ 2C1|Ω| and ρiso(x) and Miso(x) are invariant under the scaling transformation
of v. Moreover, it is shown in [38] that this choice of αiso concentrates about 50% of the
mesh points in the regions of large ρiso. The mesh concentration can be adjusted by
modifying the definition into

αiso =

[

(1 − β)

β |Ω|

∫

Ω
‖Dlv‖

nq

n+q(l−m)
p dx

]

n+q(l−m)
nq

, (3.25)

where β ∈ (0, 1) indicates the percentage of the mesh points concentrated in the regions
of large ρiso. Numerical experience shows that β ∈ [0.5, 0.8] works well for most cases.

For the monitor function (3.23) with αiso given in (3.25), Theorem 3.2 and inequality
(3.21) imply that the interpolation error has a bound on a mesh satisfying equidistribution
and alignment conditions (2.2) and (2.3) as

|v − Πkv|W m,q(Ω)
<→ CN−

(l−m)
n |v|

W
l,

nq
n+q(l−m) (Ω)

, (3.26)

where σ ≤ C and (3.25) have been used.

On a general mesh, from the definitions for Qeq (2.5) and ρ (3.22) we can rewrite (3.17)
as

|v − Πkv|W m,q(Ω)
<→ C N−

(l−m)
n Qmesh,iso |v|

W
l,

nq
n+q(l−m) (Ω)

, (3.27)

where the overall mesh quality measure, Qmesh,iso, is defined by

Qmesh,iso =

[

1

σ

∫

Ω

(

Q̂
m(n−1)

n
geo · Q

l(n−1)
n

geo · Q
(l−m)

n
eq

)q

ρisodx

]
1
q

, (3.28)

which is the weighted Lq norm (with weight function ρiso) of Q̂
m(n−1)

n
geo Q

l(n−1)
n

geo Q
(l−m)

n
eq .

3.3.2 The anisotropic case with l = 1

For this case, conditions (3.1) and (3.2) require that s = 0 (with s being the highest order
of derivatives appearing in the interpolation) and p > n. Moreover, it is common practice
to use m = 0 for l = 1. For this reason, we restrict our attention to the situation m = 0
in this subsection.

The monitor function is defined based on estimate (3.15) with m = 0, i.e.,

‖v − Πkv‖q
Lq(Ω)

<→ CN−
q

n

∫

Ω

(

tr
(

J
T∇v∇vT

J
))

q

2 dx, ∀v ∈ W 1,p(Ω).
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This is regularized with an intensity parameter αani,1 > 0 as

‖v−Πkv‖q
Lq(Ω)

<→ CN−
q

n αq
ani,1

∫

Ω

(

tr

(

J
T

[

I +
1

α2
ani,1

∇v∇vT

]

J

))
q

2

dx, ∀v ∈ W 1,p(Ω).

The derivations of the monitor function M and the intensity parameter αani,1 for the
current case are similar to the isotropic case in the previous subsection, except that we
now require that a mesh satisfying the equidistribution and alignment conditions (2.2)
and (2.3) also satisfy

1

n
tr

(

J
T

[

I +
1

α2
ani,1

∇v∇vT

]

J

)

= det

(

J
T

[

I +
1

α2
ani,1

∇v∇vT

]

J

)
1
n

, (3.29)

instead of the geometric condition (3.18). The results are recorded as follows:

ρ = ρani,1 ≡
(

1 +
1

α2
ani,1

‖∇v‖2

)
q

2(n+q)

, (3.30)

M = Mani,1 ≡
(

1 +
1

α2
ani,1

‖∇v‖2

)

−
1

n+q
[

I +
1

α2
ani,1

∇v∇vT

]

, (3.31)

αani,1 =

[

(1 − β)

β |Ω|

∫

Ω
‖∇v‖

q

n+q dx

]
n+q

q

, (3.32)

where β indicates roughly the percentage of the mesh points concentrated in the regions
of large ρani,1. It is recommended that β be chosen from [0.5, 0.8]. On a general mesh the
interpolation error has a bound given by

‖v − Πkv‖Lq(Ω)
<→ CN−

1
n Qmesh,ani,1 · |v|

W
1,

q
n+q (Ω)

, ∀v ∈ W 1,p(Ω), (3.33)

where the overall mesh quality measure is defined by

Qmesh,ani,1 =

[

1

σ

∫

Ω

(

Q
n−1

n

ali · Q
1
n
eq

)q

ρani,1dx

]
1
q

. (3.34)

It is noted that Qmesh,ani,1 = 1 on a mesh satisfying the equidistribution and alignment
conditions (2.2) and (2.3).

3.3.3 The anisotropic case with l = 2

For simplicity we consider in this subsection only the case l = 2. The procedure can
straightforwardly be used for the general case with l ≥ 2.
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The monitor function is defined based on the estimate (3.16) with l = 2, i.e.,

|v − Πkv|qW m,q(Ω)

<→ CN−
(2−m)q

n

∫

Ω
‖J−1‖mq ·

(

tr
(

J
T |H (v)|J

))q
dx

for v ∈ W 2,p(Ω). The regularized form with an intensity parameter αani,2 > 0 reads

|v − Πkv|qW m,q(Ω)

<→ CN−
(2−m)q

n αq
ani,2

∫

Ω
‖J−1‖mq ·

(

tr

(

J
T

[

I +
1

αani,2
|H (v)|

]

J

))q

dx. (3.35)

Note that for the current case, m can take the values m = 0 and m = 1. When m = 1,
the error bound given above involves ‖J−1‖mq and the term containing the matrix trace.
As we have seen in the previous subsections, the former is associated with the geometric
measure or condition (3.18) while the latter is linked to the alignment measure or

1

n
tr

(

J
T

[

I +
1

α2
ani,1

∇v∇vT

]

J

)

= det

(

J
T

[

I +
1

αani,2
|H (v)|

]

J

)
1
n

(3.36)

(Also see condition (3.29)). Since a mesh cannot simultaneously satisfy both the geometric
condition (3.18) and the alignment condition (3.36), we define the monitor function by
requiring that a mesh satisfying the equidistribution and alignment conditions (2.2) and
(2.3) also satisfy (3.36). Comparison of (3.36) with (2.3) gives

M = θ(x)

[

I +
1

αani,2
|H (v)|

]

(3.37)

for some scalar function θ = θ(x). With the so-defined monitor function, definition of Qali

in Eq. (2.6) yields

tr

(

J
T

[

I +
1

α2
ani,1

∇v∇vT

]

J

)

= Q
2(n−1)

n

ali n J
2
n det

(

I +
1

αani,2
|H (v)|

)
1
n

. (3.38)

It is noted that when m > 0, the factor ‖J−1‖ appears in the bound (3.35). This factor
is bounded in [34] using the geometric quality measure Qgeo (see Eq. (2.8)); namely,

‖J−1‖ ≤ ‖J−1‖F = Q
(n−1)

n
geo

√
n J

1
n .

The final bound for the interpolation error then involves both Qali and Qgeo, whose min-
imization will require that the mesh satisfy the alignment and geometric conditions (2.3)
and (3.18). Generally speaking, such a mesh does not exist since the conditions are con-
tradictory to each other. To avoid this difficulty, we bound ‖J−1‖ with the alignment
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measure (instead of the geometric measure). For a monitor function in the form (3.37),
from (2.11) it is not difficult to get

Q̂
2(n−1)

n
geo ≤ Q̂

2(n−1)
n

ali

∥

∥

∥
I + 1

αani,2
|H (v)|

∥

∥

∥

det
(

I + 1
αani,2

|H (v)|
)

1
n

.

Hence,

‖J−1‖ ≤ ‖J−1‖F =

√

tr(J−1
J

−T )

=
√

nQ̂
n−1

n
geo · |J |− 1

n

≤
√

n |J |− 1
n Q̂

n−1
n

ali

∥

∥

∥
I + 1

αani,2
|H (v)|

∥

∥

∥

1
2

det
(

I + 1
αani,2

|H (v)|
)

1
2n

. (3.39)

Thus, from (3.39), the definition of the alignment measure, and the error bound (3.35) we
have

|v − Πkv|qW m,q(Ω)

<→ CN−
(2−m)q

n αq
ani,2

∫

Ω Q̂
mq(n−1)

n

ali · Q
2q(n−1)

n

ali · |J |
(2−m)q

n ×
∥

∥

∥
I + 1

αani,2
|H (v)|

∥

∥

∥

mq

2
det

(

I + 1
αani,2

|H (v)|
)

(2−m)q
2n

dx. (3.40)

This error bound is greater than those obtained in [34, 35] for the case m = 1, but it has
the advantage that the effect of element skewness has been taken into account in (3.40)
through inequality (3.39). The procedure used in the previous subsections to define M
can straightforwardly be applied to (3.40). We obtain

ρ = ρani,2 ≡
∥

∥

∥
I + 1

αani,2
|H (v)|

∥

∥

∥

mnq

2(n+(2−m)q) · det
(

I + 1
αani,2

|H (v)|
)

(2−m)q
2(n+(2−m)q)

(3.41)

M = Mani,2 ≡ ρ
2
n

ani,2 · det
(

I + 1
αani,2

|H (v)|
)

−
1
n

[

I + 1
αani,2

|H (v)|
]

, (3.42)

and the intensity parameter αani,2 has to be defined implicitly through the equation

∫

Ω
ρani,2(x)dx =

|Ω|
1 − β

, (3.43)

where, once again, β indicates roughly the percentage of the mesh points concentrated in
the regions of large ρani,2. It is recommended that β be chosen from [0.5, 0.8]. It can be
shown that the so-defined αani,2 satisfies

αani,2 ≤ C

[
∫

Ω
tr (|H(v)|)

nq

n+(2−m)q dx

]

n+(2−m)q
nq

≤ C|v|
W

2,
nq

n+(2−m)q (Ω)
. (3.44)



295 Weizhang Huang / Commun. Comput. Phys., 1 (2006), pp. 276-310

The interpolation error on a general mesh is bounded by

|v − Πkv|W m,q(Ω)
<→ CN−

(2−m)
n αani,2 Qmesh,ani,2, (3.45)

where the overall quality measure is defined as

Qmesh,ani,2 =

[

1

σ

∫

Ω

(

Q̂
m(n−1)

n

ali · Q
2(n−1)

n

ali · Q
(2−m)

n
eq

)q

ρani,2dx

]
1
q

. (3.46)

with Qmesh,ani,2 = 1 for a mesh satisfying equidistribution and alignment conditions (2.2)
and (2.3) with the monitor function defined in (3.42).

3.3.4 Remark on the computation of monitor functions

The formulas of the monitor function developed in this section depend on several factors,
including the function regularity (through parameters l and p), the dimension of space
(n), and the norm used to measure interpolation error (m and q). Moreover, the formulas
involve derivatives (of order l ≤ k + 1) of the physical solution, which is unknown in
general. Fortunately, adaptive computation is often carried out in an iterative fashion and
approximations of the nodal values of the physical solution on the current mesh are always
available. A gradient recovery technique such as those of Zienkiewicz and Zhu [58,59] and
Zhang and Naga [57] can then be used for computing the needed derivatives.

4 Adaptive anisotropic mesh generation

In this section we study the use of the principles discussed in §2 in the design of algorithms
for generating meshes that satisfy equidistribution and alignment conditions (2.2) and
(2.3). We focus on two types of mesh adaptation method, variational and refinement
methods, for steady state problems.

4.1 Variational mesh adaptation

In the variational approach of mesh adaptation, adaptive meshes are generated as im-
ages of a computational mesh under a coordinate transformation from the computational
domain to the physical domain. The coordinate transformation is determined by the
so-called adaptation functional which is commonly designed to measure the difficulty in
the numerical approximation of the physical solution. The functional often involves mesh
properties and employs a monitor function to control mesh concentration.

The key to the development of variational methods is to formulate the adaptation
functional. Generally speaking, an error bound such as (3.14) - (3.16) cannot be used
directly as an adaptation functional since they are highly nonlinear and non-convex and
their direct minimization often leads to a nasty optimization problem. Adaptation func-
tionals of most existing variational methods have been developed based on geometric and
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physical considerations; e.g., see [9, 10, 23, 41, 54] and the books [24, 40, 45, 53], and the
references therein. It is worth mentioning that adaptation functionals for steady prob-
lems can also be used for solving time dependent problems, particularly in the context of
moving meshes; see [5, 13, 36,44,51,56].

In this section we derive a functional for the inverse coordinate transformation ξ =
ξ(x) : Ω → Ωc based on the equidistribution and alignment conditions (2.2) and (2.3). The
functional has been proposed in [33] using the isotropy (or conformal) and equidistribution
arguments.

We first consider the alignment condition (2.3). Denote the eigenvalues of matrix
J

−1M−1
J

−T by λ1, ..., λn. By the arithmetic-geometric mean inequality, the desired co-
ordinate transformation (which should satisfy (2.3) as closely as possible) can be obtained
by minimizing the difference between the two sides of the inequality

(

∏

i

λi

)
1
n

≤ 1

n

∑

i

λi. (4.1)

From

∑

i

λi = tr
(

J
−1M−1

J
−T

)

=
∑

i

(∇ξi)
T M−1∇ξi,

∏

i

λi = det
(

J
−1M−1

J
−T

)

=
1

(Jρ)2
,

where ρ =
√

det(M), (4.1) can be rewritten into

(

1

Jρ

)
2
n

≤ 1

n

∑

i

(∇ξi)
T M−1∇ξi

or

n
nγ

2
ρ

(Jρ)γ
≤ ρ

(

∑

i

(∇ξi)
T M−1∇ξi

)
nγ

2

for any real number γ ≥ 1. Globally, the coordinate transformation should be defined as
a minimizer of the functional

∫

Ω



ρ

(

∑

i

(∇ξi)
T M−1∇ξi

)
nγ

2

− n
nγ

2
ρ

(Jρ)γ



 dx. (4.2)

On the other hand, it is known [30,33] that the inequality

∫

Ω

ρ

Jρ
dx =

∫

Ωc

dξ ≤
(

∫

Ω

ρ

(Jρ)γ
dx

)
1
γ
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holds for any number γ > 1, with equality if and only if Jρ ≡ constant. Hence, the
desired coordinate transformation according to the equidistribution condition (2.2) should
be defined as a minimizer of the functional

∫

Ω

ρ

(Jρ)γ
dx. (4.3)

The functional balancing the equidistribution and alignment conditions can then be ob-
tained by weighing (4.2) and (4.3), viz.,

I[ξ] = θ

∫

Ω
ρ

(

∑

i

(∇ξi)
T M−1∇ξi

)
nγ

2

dx + (1 − 2θ)n
nγ

2

∫

Ω

ρ

(Jρ)γ
dx, (4.4)

where θ ∈ [0, 1] and γ > 1. This functional has been derived in [33] from slightly different
considerations. Numerical experiments in [12,33] have shown that θ = 0.1 and γ = 2 work
well for the tested problems.

4.2 Unstructured mesh adaptation

Refinement or h-version adaptation has been the most popular approach in use for gen-
erating unstructured meshes in finite element computation because of its reliability and
conceptual simplicity. Typically with the approach, a local error estimate is computed
and then local minimization tools are employed to generate the needed adaptive mesh;
e.g., see [16, 21,22,25,27].

For anisotropic mesh adaptation, the common practice in the refinement approach is
to generate the needed anisotropic mesh as a quasi-uniform one in the metric determined
by a tensor (or a matrix-valued function) that specifies the size, shape, and orientation of
the mesh elements throughout the domain. Examples of anisotropic meshing strategies in-
clude the Delaunay triangulation method [6,7,16,47], the advancing front method [26], the
bubble mesh method [55], and the method combining local modification with smoothing
or node movement [3,8,22,29]. About a dozen computer codes, mostly in two dimensions,
have been developed or modified with the anisotropic mesh option; e.g., see the meshing
software survey by Owen [46]. Among these meshing strategies and computer codes, the
metric tensor is commonly defined based on the Hessian of the physical solution, moti-
vated mainly by the results of D’Azevedo [18] and D’Azevedo and Simpson [19] on linear
interpolation for quadratic functions on triangles; e.g., see [16, 28, 29, 48]. A number of
researchers (e.g., see [16, 25, 29, 48]) even use the Hessian directly as the metric tensor.
The Hessian can give correct information for element shape and orientation but a multi-
plicative scalar function is needed to be added to give a correct distribution of element
size, cf. the metric tensor given in (4.10) or (4.13).

Recently, a metric tensor was developed in [35] based on interpolation error estimates.
The strategy used therein is similar to that used in the previous section for defining the
monitor function. The main difference is for the case with m > 0 where the effect of
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element skewness has now been taken into account (cf. inequality (3.39)) and the overall
mesh quality measure (3.46) does not involve the geometric measure Qgeo or Q̂geo. This
is important since it means that the mesh is required to satisfy only the equidistribution
and alignment conditions (2.2) and (2.3), and such a mesh is more likely to exist (than
the one satisfying (2.2), (2.3), and (3.18)).

Given a monitor function M = M(x), it is straightforward to define the metric tensor,
denoted by M = M(x). This is because they play the same role in mesh adaptation:
to specify the size, shape, and orientation of the mesh elements throughout the physical
domain. To be specific, we consider in the following the definition of the metric tensor
for a C++ mesh generation code, BAMG (Bidimensional Anisotropic Mesh Generator),
developed by Hecht [31]. BAMG is a Delaunay-type triangulator which allows the user
to supply a metric tensor defined at the vertices of a background mesh. The user-defined
metric tensor should be given such that the elements of the desired mesh are isotropic and
have a unitary volume in the metric. Once the metric is given, BAMG employs five local
minimization tools, edge suppression, vertex suppression, vertex addition, edge swapping,
and vertex reallocation (barycentering step), to generate the needed anisotropic mesh.

Since both M and M play the same role in mesh adaptation, it is reasonable to assume
that they are related by

M(x) = cM(x) (4.5)

for some constant c. The unitary volume condition can be written mathematically as

∫

K

√

det(M(x))dx = 1, ∀K ∈ Th. (4.6)

Combining (4.5) and (4.6) gives

c
n
2

∫

K
ρ(x)dx = 1,

where ρ =
√

det(M). Summing it over all the elements, we get

c =

(

N

σ

)
2
n

,

where N is the number of elements and σ =
∫

Ω ρdx. Inserting this into (4.5) leads to

M(x) =

(

N

σ

)
2
n

M(x). (4.7)

For the monitor functions defined in §3, we then have

Miso =

(

N

σ

)
2
n

(

1 +
1

αiso
‖Dlv‖p

)
2q

n+q(l−m)

I (4.8)
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for the isotropic case,

Mani,1 =

(

N

σ

)
2
n

(

1 +
1

α2
ani,1

‖∇v‖2

)

−
1

n+q
[

I +
1

α2
ani,1

∇v∇vT

]

(4.9)

for the anisotropic case with l = 1, and

Mani,2 =

(

N

σ

)
2
n

ρ
2
n

ani,2 · det

(

I +
1

αani,2
|H (v)|

)

−
1
n

[

I +
1

αani,2
|H (v)|

]

(4.10)

for the anisotropic case with l = 2. Note that σ =
∫

Ω ρisodx,
∫

Ω ρani,1dx, and
∫

Ω ρani,2dx
for the above three cases, respectively.

The metric tensor can also be given in terms of a prescribed error level. We take the
isotropic case as an example. From (3.27) and (3.25), we can see that the error bound
is asymptotically proportional to N−(l−m)/nαiso provided that Qmesh,iso ≤ C for some
constant C. (Recall that the desired mesh is the one with Qmesh,iso = 1.) Setting

N−
l−m

n αiso = ε0,

where ε0 is a prescribed level for the global error |v − Πkv|W m,q(Ω), we get

N =

(

αiso

ε0

)
n

l−m

.

Inserting it into (4.8) yields

Miso =

(

1

σ

(

αiso

ε0

)
n

l−m

)
2
n (

1 +
1

αiso
‖Dlv‖p

)
2q

n+q(l−m)

I (4.11)

for the isotropic case. Similarly, we have

Mani,1 =

(

1

σ

(

αani,1

ε0

)n)
2
n

(

1 +
1

α2
ani,1

‖∇v‖2

)

−
1
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[
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ani,1

∇v∇vT

]

(4.12)

for the anisotropic case with l = 1, and

Mani,2 =

(

1

σ

(

αani,2

ε0

)
n

2−m

)
2
n

ρ
2
n

ani,2 · det

(

I +
1

αani,2
|H (v)|

)

−
1
n

[

I +
1

αani,2
|H (v)|

]

(4.13)
for the anisotropic case with l = 2. Note that ε0 in (4.12) and (4.13) is a prescribed level
of global error ‖v − Πkv‖Lq(Ω) and |v − Πkv|W m,q(Ω), respectively.

It is worth mentioning that the remark on the computation of the monitor function in
§3.3.4 also holds for the computation of the metric tensor.
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Finally we point out that, as for the monitor functions defined in the previous section,
the metric tensors defined here are the same as those of [35], except for the anisotropic
case l = 2 and m = 1. The present metric tensor is defined using a bound on the gradient
of linear interpolation error which is based on a more realistic mesh requirement – with
the mesh closely satisfying the equidistribution and alignment conditions (2.2) and (2.3).

5 Numerical examples

In this section we present some numerical results for four two-dimensional examples.
Adaptive meshes are generated in an iterative fashion using BAMG (the Bidimensional
Anisotropic Mesh Generator developed by Hecht [31]) with the metric tensor defined in
§4.2. To be more specific, we assume that a current mesh is available. The nodal values
of the physical solution, or their approximations as typically in the numerical solution
of PDEs, are then obtained. This is followed by the computation of the metric tensor
on the current mesh, where a gradient recovery technique is employed to calculate the
solution derivatives needed in the definition of the metric tensor; see the remark made
in §3.3.4. The adaptive mesh is finally obtained using BAMG with the computed metric
tensor defined on the current mesh (which serves as the background mesh). The process
is repeated twenty times.

We recall that the metric tensor defined in §4.2 is different from that defined in [35]
for anisotropic cases with m ≥ 1. For this reason, we focus our discussion on the isotropic
and anisotropic cases with linear interpolation (k = 1 and l = 2) and the L2 measure of
gradient of the interpolation error (m = 1 and p = q = 2). The interested reader is referred
to [34,35] for more numerical results in anisotropic and variational mesh adaptation.

The parameter β used in the definitions of αiso (3.25) and αani,2 (3.43) is taken as
β = 0.75 in all of the computation.

Example 5.1. This example is to generate an adaptive mesh for the analytical function

v(x, y) = tanh(60y) − tanh(60(x − y) − 30) in Ω = (0, 1)2. (5.1)

This function simulates the interaction of a boundary layer along the x-axis with an oblique
shock wave along the straight line y = x − 0.5.

Fig. 4 shows typical isotropic and anisotropic meshes obtained with metric tensors
(4.8) and (4.10). The meshes have almost the same number of vertices (or elements)
but the linear interpolation error in either H1 seminorm or L2 norm is much smaller on
the anisotropic mesh than on the isotropic one. (In fact, the L2 norm of the error is an
order of magnitude smaller on the anisotropic mesh.) The aspect ratio of some anisotropic
elements is about ‖Qgeo‖∞ = 17.

The advantage of using an adaptive mesh over a uniform one, or an anisotropic mesh
over an isotropic one, can be seen from Fig. 5 where the linear interpolation error is
depicted as function of the number of elements. Fig. 6 shows the geometric, alignment,
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(a) (b)

Figure 4: Example 5.1. (a) An isotropic mesh is obtained with metric tensor Miso (4.8): nbv = 567, nbt =
1022, |e|H1 = 3.4, ‖e‖L2 = 1.6e − 2, ‖Qgeo‖∞ = 1.5. (b) An anisotropic mesh is obtained with metric tensor
Mani,2 (4.10): nbv = 566, nbt = 1039, |e|H1 = 0.83, ‖e‖L2 = 1.4e − 3, ‖Qgeo‖∞ = 17, ‖Qali‖∞ = 1.5.

and overall qualities for isotropic and anisotropic meshes. On can see that the mesh
quality does not deteriorate as the mesh is refined. Moreover, a large value of ‖Qgeo‖∞ for
the anisotropic mesh indicates that some elements have large aspect ratio and are highly
skewed. Nevertheless, the overall mesh quality measure, which measures the effect of mesh
quality on interpolation error (cf. bound (3.45)), maintains small. This is not surprising
since the definition of the measure, (3.46), does not involve Qgeo. It instead contains the
alignment and equidistribution measures which are small for the current situation (see
Fig. 6(a)).

In Fig. 7(a) the actual number (nbt) of elements is plotted against the prescribed
number (N) of elements and in Fig. 7(b) the H1 seminorm of interpolation error (|e|H1)
is plotted against the prescribed level of the error (ε0). We can see that nbt ∝ N for
sufficiently large N and |e|H1 ∝ ε0 for sufficiently small ε0. This shows that the metric
tensor defined in §4.2 provides an effective control on adaptive mesh generation.

Example 5.2. The second example is to solve a nonlinear boundary value problem (BVP)
for the differential equation

−0.005(vxx + vyy) + vvx + vvy = f in Ω = (0, 1)2. (5.2)

The function f and the Dirichlet boundary condition are chosen such that the BVP has
the exact solution

v(x, y) =
(

1.0 + e
x+y−0.85

0.01

)

−1
. (5.3)

The PDE is discretized on a triangular mesh using linear elements. It is emphasized that
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(a) (b)

Figure 5: Example 5.1. The H1 seminorm and L2 norm of linear interpolation error are shown against the
number of elements.

(a) (b)

Figure 6: Example 5.1. The geometric, alignment, and overall mesh quality measures are shown as function of
the number of elements for isotropic and anisotropic meshes.

although the metric tensor has been derived in §4.2 using interpolation error estimates (a
priori), our computation is completely a posteriori since the metric tensor is calculated
and therefore the mesh is generated based on the computed solution of the BVP.

Numerical results are shown in Figs. 8 and 9. Once again, the advantage of using
anisotropic meshes is obvious.

Example 5.3. The third example is to solve a BVP for the Laplace equation

vxx + vyy = 0 (5.4)

defined on Ω ≡ {0 ≤ r < 1, 0 < θ < 7π/4}. The Dirichlet boundary condition is chosen
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(a) (b)

Figure 7: Example 5.1. (a) The actual number (nbt) of elements is depicted against the prescribed number
(N) of elements. (b) The H1 seminorm of interpolation error is shown against the prescribed level of the error.

such that the exact solution is given by

v = r
2
7 sin

(

2π

7

)

. (5.5)

The differential equation is discretized using linear elements on a triangular mesh.
The results are shown in Figs. 10 and 11. Note that the solution of this example does

not have strong anisotropic features and the meshes generated using Mani,2 are isotropic
and similar to those obtained with Miso. Fig. 11 shows that the solution error is almost
the same on the meshes generated using metric tensors Miso and Mani,2.

Example 5.4. The last example is to generate an adaptive mesh for a function with two
components,

v1 = (10x3 + y3) + atan2(0.001, sin(5y) − 2x),

v2 = (10y3 + x3) + atan2(0.01, sin(5x) − 2y) (5.6)

defined on the unit disk. Here, atan2(y, x) = tan−1(y/x) is the two-parameter arctangent
function which returns an angle in the range from −π to π. This example is taken from
a document of BAMG [31] and used to verify the intersection of matrices discussed in
Remark 3.3 of §3.1. Specifically, a metric tensor is constructed based on interpolation
error for each of the two components. The final metric tensor is defined as the intersection
of the metric tensors associated with the function components.

The numerical results are shown in Figs. 12 and 13. We can see that the linear inter-
polation error on the uniform and isotropic meshes barely converges in the H1 seminorm
or converges slowly in the L2 norm in the considered range of the number of elements
whereas that on the anisotropic mesh converges in the first and second order in the H1

seminorm and the L2 norm, respectively. The advantage of using an anisotropic mesh is
clear, especially when the number of elements is relatively large.
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(a) (b)

(c) (d)

Figure 8: Example 5.2. (a) An isotropic mesh is obtained with metric tensor Miso (4.8): nbv = 1198, nbt =
2312, |e|H1 = 1.1, ‖e‖L2 = 1.5e − 2, ‖Qgeo‖∞ = 1.4. (b) An anisotropic mesh is obtained with metric tensor
Mani,2 (4.10): nbv = 1229, nbt = 2347, |e|H1 = 0.21, ‖e‖L2 = 2.1e− 3, ‖Qgeo‖∞ = 16, ‖Qali‖∞ = 1.5. (c)
and (d) The computed solution is obtained on the meshes shown in (a) and (b), respectively.

6 Conclusions

Mesh adaptation has been studied in the previous sections in the mesh control point of
view. It has been shown that the equidistribution and alignment principles, represented
by the conditions (2.2) and (2.3), are necessary and sufficient for a complete control of
the size, shape, and orientation of mesh elements throughout the physical domain. A key
component in the conditions is the monitor function, a symmetric and positive definite
matrix prescribed by the user for specifying the information on the mesh.

The definition of the monitor function M = M(x) has been studied based on the
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(a) (b)

Figure 9: Example 5.2. (a) The H1 seminorm of linear interpolation error is shown against the number of
elements. (b) The geometric and alignment mesh quality measures are shown as function of the number of
elements.

(a) (b)

Figure 10: Example 5.3. (a) An anisotropic mesh is obtained with metric tensor Mani,2 (4.10): nbv =
718, nbt = 1338, |e|H1 = 3.9, ‖e‖L2 = 7.5e − 4, ‖Qgeo‖∞ = 1.7, ‖Qali‖∞ = 1.6. (b) The computed solution
is obtained on the mesh shown in (a).

interpolation error on simplicial elements. The basic idea is to define M such that an
error bound is minimized to some extent on a mesh satisfying the equidistribution and
alignment conditions (2.2) and (2.3). The monitor function is given in (3.23) for the
isotropic case, in (3.31) for the anisotropic case with l = 1 (such as piecewise constant
interpolation), and in (3.42) for the anisotropic case with l = 2 (such as piecewise linear
interpolation). These monitor functions are strictly positive definite and parameter free,
and thus there is no need for regularization and parameter tuning in using them.
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(a) (b)

Figure 11: Example 5.3. The H1 seminorm and L2 norm of linear interpolation error are shown against the
number of elements.

(a) (b)

Figure 12: Example 5.4. (a) An isotropic mesh is obtained with metric tensor Miso (4.8): nbv = 2468, nbt =
4833, |e|H1 = 150, ‖e‖L2 = 0.24, ‖Qgeo‖∞ = 1.7, Qmesh = 1.1. (b) An anisotropic mesh is obtained
with metric tensor Mani,2 (4.10): nbv = 2401, nbt = 4709, |e|H1 = 83, ‖e‖L2 = 0.073, ‖Qgeo‖∞ =
120, ‖Qali‖∞ = 21, Qmesh = 1.2.

Algorithms for generating meshes satisfying conditions (2.2) and (2.3) for a given mon-
itor function have been investigated. The focus has been on variational mesh adaptation
and unstructured mesh refinement. A mesh adaptation functional, (4.4), first proposed
in [33], was re-derived here using the equidistribution and alignment conditions. On the
other hand, a common practice for generating unstructured, anisotropic meshes is to gen-
erate them as isotropic ones in the metric determined by a tensor (or a matrix-valued
function). The metric tensor plays a crucial role in this approach. A metric tensor has
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(a) (b)

Figure 13: Example 5.4. The H1 seminorm and L2 norm of linear interpolation error are shown against the
number of elements.

been developed based on interpolation error: (4.8) for the isotropic case, (4.9) for the
anisotropic case with l = 1, and (4.10) for the anisotropic case with l = 2, correspond-
ing to the monitor function for each case. These formulas are expressed in terms of a
prescribed number of elements. They can also be written in terms of a prescribed level
of interpolation error; see (4.11), (4.12), and (4.13). Numerical results were presented to
demonstrate that the metric tensors can be used to generate proper anisotropic meshes
for a given function or the solution of a given PDE. They also showed that a properly
generated anisotropic mesh can produce more accurate results than an isotropic one, espe-
cially when the solution of the PDE exhibits a strong anisotropic feature that the solution
changes more significantly in one direction than the others.
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