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Moving mesh partial differential equations (MMPDESs) are used in the MMPDE
moving mesh method to generate adaptive moving meshes for the numerical solution
of time dependent problems. How MMPDEs are formulated and solved is cru-
cial to the efficiency and robustness of the method. In this paper, several practical
aspects of formulating and solving MMPDEs are studied. They include spatial bal-
ance, scaling invariance, effective control of mesh concentration, bounds on time
steps, multiple sub-steps, and two-level mesh movement. Numerical results are also
given. (© 2001 Academic Press
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1. INTRODUCTION

In this paper we are concerned with moving mesh methods for the numerical solutiot
time dependent partial differential equations (PDES). Within a moving mesh method, am
equation is employed to move the mesh points around in an orderly fashion while keey
them concentrated in regions of large solution variations. The key to the developmen
the method is to formulate and efficiently solve the mesh equation. In the past, a variet
one- and two-dimensional moving methods have been developed and successfully ap
to many problems; e.g., see [12] and references therein. However, more robust and effi
methods have to be developed, especially in multi-dimensions.

We have recently developed the so-called moving mesh PDE (MMPDE) approach
moving mesh methods [13-16]. With this approach, an adaptive moving mesh is consid
as the image of a reference mesh through a time dependent coordinate transforme
A continuous mesh equation, or an MMPDE, is then used to determine the coordir
transformation. The MMPDE is formulated as a modified gradient flow equation of
general adaption functional, which involves various properties of the mesh and phys
solution. In one dimension, the approach has unified many existing methods and prov
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a framework to study their properties and develop robust and efficient new methods |
14]. The two-dimensional development of the method has also been very promising |
16]. It has been successfully used for generating both structured and unstructured me
for a number of problems [4].

However, it should be pointed out that a number of issues related to the formulation :
solution of the MMPDE are still unclear. For example, there are a variety of ways to defi
a modified gradient flow equation of a functional, and all the resultant MMPDESs work wil
a certain degree of success, although some of them are not as robust as others. Ex
control of mesh adaption is yet to be developed to avoid under or over concentratior
mesh points. With the MMPDE approach, the physical PDE is replaced with an extenc
system consisting of the physical PDE and the mesh PDE. The system must be so
numerically for both the physical solution and the mesh. It is suggested in [15, 16] to L
simultaneous solution methods for one-dimensional problems but alternating proced
in two dimensions for efficiency reasons. But, this type of alternating solution procedul
may cause trouble in accuracy and stability since the physical and mesh PDEs can |
significantly different time scales. Moreover, the time scale of the MMPDE depends ot
user prescribed parametgmwhich makes it even more difficult to design a robust alternatin
solution procedure.

The objective of this paper is twofold. The first one is to attempt to offer answers to sol
of the questions raised by the aforementioned issues related to formulation and solutio
the MMPDE. The other is to provide more implementation details than those provided
[15, 16] so that the interested reader would find an easier way to use the MMPDE mov
mesh method for solving problems. To be more specific, we will show how to expre
the MMPDE in a simple form. Based on this form, we will then introduce the concep
of spatial balance and scaling invariance and study how to construct MMPDESs hav
these desired properties. Construction of the monitor function will be briefly discuss
and a method will be presented for effective control of mesh concentration. Issues aris
from the solution of MMPDEs, such as bounding time steps to get convergent meshes
employing multiple sub-steps for smoother mesh movement, will be investigated. A sim
two-level mesh movement strategy will also be presented for further reducing the overh
of mesh generation for the numerical solution of PDEs.

An outline of the paper is as follows. In Section 2, the formulation of MMPDES i
briefly described. In Section 3, the concepts of spatial balancing and scaling invaria
are introduced and discussed. Construction of the monitor function and effective con
of mesh concentration are also addressed in Section 3. The discretization and solt
procedure are given in Section 4 for two-dimensional MMPDEs. The choice of the tir
step bound and its effect are addressed also in this section. Numerical results are ¢
in Section 5 for two problems having analytical solutions. A two-level mesh moveme
strategy is introduced for further improving the efficiency of the moving mesh method, a
some numerical results using it are presented in Section 6. Finally, Section 7 contains
conclusions.

2. MOVING MESH PDEs

Let © be the domain where the physical problem is defined, an@Jdte the compu-
tational domain that is chosen artificially for the purpose of mesh generation. Denote
x = (x1, x%, x3)T and¢ = (&1, £2, £3)7 the physical and computational coordinategn
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and<., respectively. Then, adaptive moving meshe<aran be generated as the images
of a reference mesh M. through a one-to-one, time dependent, coordinate transformati
or mappingx = x(&, t).

Mappingx = x(&, t) is defined in [15, 16] as the solution of the gradient flow equatiol
of a quadratic functional that involves various properties of the mesh and physical soluti
Specifically, denoting by = £(x, t) the inverse mapping of = x(&,t), we define the
mesh adaption functional as

1[¢] = % / Z(vsBTG*vsidx, @)
Q I

whereV is the gradient operator with respectitandG, the so-called monitor function, is
a three-by-three symmetric positive definite matrix which interconnects the mesh and
physical solution. The MMPDE is then constructed as the (modified) gradient flow equat

of 1],

1
% _Py.Gtveh, =123 @)
at T
wherer > 0 is the user-defined parameter used for adjusting the time scale of mesh mc
ment andp is a positive function to be chosen such that the MMPDE has desired properti
(1) is defined in terms of inverse mappigg= £(x, t). It is well known that the so de-
fined functional is less likely to result in a singular coordinate transformation than a simi
functional defined in terms of = x(€, t); e.g., see [8]. In practice, however, it is more
convenient to work directly witlk = x(&, t) since it explicitly defines the locations of mesh
points. Alsox = x(&, t) is easier to approximate numerically thea= £(x, t), which, by
construction, has sharp layers in regions where mesh adaption is needed.

The MMPDE forx = x(&, t) can be obtained by interchanging the roles of depende
and independent variables in (2). To this end, it is convenient to introduce the covariant
contravariant base vectors

aX

a‘:a?i’ a=ve, =123, ©)

which are related by
i1 iy Ak | I ;
a:ja,-xak, g =Ja xa ag-a=3¢, (,],Kk) cyclic, (4)
wheres! is the Kronecker delta function, ariis the Jacobian
J=a;-(az x ag). ©)
With help of the following transformation relations
i 0 1 d .
V == al—. = — —Jal,
zi: SR

0J L 0q
— =] a . —,
35' Z agl
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()
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X yal

that seem to first appear in [24], (2) can be transformed into

__"P 9 (3ai
Jiz.;:aiag'(‘]a -G, (6)

or in a fully non-conservative form

X 1 . 9GTL 1\ ax
PO J)as'asl_iz_;( % al) 51 v

Functional (1) is very general, including several well-known steady-state methods
special cases. Indeed, we get the method based on harmonic maps [8] by Gaking
M/./det M) for some symmetric, positive definite matik, and Winslow's mesh adaption
method [25]foiG = w| with some weight functiow. The latter is generalized by Brackbill
and Saltzman [3] to include terms for further mesh smoothness and orthogonality cont
Theirs has become one of the most popular methods used for steady-state mesh adar

We conclude this section by remarking that formula (7) is much simpler and easier
implement than those given in [15, 16]. For Winslow’s monitor funci&e= wl, (7) can
further be simplified as

ZZ< d-a '>( g;) ®)

3. ASPECTS RELATED TO THE FORMULATION OF MMPDEs

We study in this section several aspects which are related to the formulation of
MMPDE and important to the efficiency and robustness of the moving mesh method. Tl
include the choices of functiop and the monitor function, scaling invariance, boundary
correspondence, and the control of mesh concentration.

3.1. Choice of Function p

Ideally, p should be chosen so that all the mesh points move with a uniform time scale..
MMPDE, which has a uniform time scale, will be easier to integrate numerically and w
work more reliably with a constant value of Unfortunately, it is unclear mathematically
how a PDE can be made to have a uniform time scale. We use here a heuristic, spatial bal
criterion, i.e., choosing such that the coefficients, especially those of the second-ord
derivatives, change evenly over the domain. In other words, we would like to cipenssh
that the MMPDE behaves more like a diffusion equation with an almost constant diffusi
coefficient.

In [15, 16], p is taken as A,/0, whereg is the determinant oG, motivated by the
theory of harmonic maps. However, it is more appropriate to {ake1/.¢/g, whered is
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the dimension of the spatial domain, from the view point of dimensional analysis. The lat
leads to the MMPDE

ax i 1 _ i_aeli)ax
i 7o Z(a G- )ag'agl iZj:<a 58 a 7 | (9)

Noticing thatG—* = = O(1/y9), we estimate that the coefficients of (9) have the siz
> 1d'12/(¢/g)2. Thus, the MMPDE is spatially balanced if

> 11d1?/(Y@? ~ constant (10)

To see if (10) is true, we first point out that in one dimension, (10) reads as

19

198 /A constant (11)

g ox

which is the well-known equidistribution principle [14]. (10) can then be regarded as
generalization of the equidistribution principle. On the other hand, (11) can be derived fr

the Euler-Lagrange equation of functional

1[5 = ;Q/; (gif dx (12)

which is the one-dimensional version of functional (1). Thus, functional (1) can also
considered as a generalization of the equidistribution principle. Since both (1) and (10)
generalizations of the equidistribution principle, we can intuitively believe that the soluti
to (9), the gradient flow equation of (1), satisfies (10), at least wheismall. In this sense,
the coefficients of (9) will change evenly over the domain, and therefore, (9) is spatis
balanced.

The simplest way to obtain well spatially balanced MMPDEs is to scale the terms
the right-hand side of (7) by some bound on the coefficients. For instance, we can 1

p=1/4/>"(a2 + b?), where
aj=a-Gtal,

(13)
. 8GT i -1
—Za-—.a‘:—a~(V-G ).
j 0!
Note that the change of the monitor function has been taken into account in the scaling.
corresponding MMPDE is given by

X X

By construction, the coefficients of the MMPDE have s2@).

Like row scaling used in Gaussian elimination for solving linear algebraic systems [1
it is difficult to understand theoretically how spatial balancing may affect the conditionir
(or stiffness) of the MMPDE. Nevertheless, computational experience does show that
above two choices fgp often work much better than no balancing (i~ 1).
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3.2. Scaling Invariance

Scaling invariance is important in formulating MMPDES. It often indicates the robustne
of MMPDEs to handle problems with physical domains and monitor functions havir
various scales. We are concerned here withxtigeandG scaling invariance. The definition
is as follows. An MMPDE is calle# (&, or G) scaling invariant if itis invariant under scaling
transformatiorx — ax(§ — «&, or G — «G) for all @« > 0. Thex scaling invariance is
considered by suppressing the fact that the monitor function is a function of

It is easy to verify that (9) ig scaling invariant while (14) ix andG scaling invariant.
Thus, MMPDE (9) will change if we re-scale the physical domain and/or the monit
function. Obviously, the change can be compensated for by using a different vatue o
However, this is not good since a different value ahust be used to obtain the same resull
after we simply re-scal® and/orG. On the other hand, a universal value fowill work
well with (14) for physical domains and monitor functions with various scales, provide
that the computational domain is chosen to have a standard size.

3.3. Boundary Correspondence

To completely specify the coordinate transformation, the MMPDEs must be supp
mented with suitable boundary conditions. Generally speaking, we can use three type
boundary conditions. The first is Dirichlet conditions with which the boundary points a
held fixed. The second is orthogonal ones, for which one set of coordinate lines are requ
to be orthogonal to the physical boundary. For the other, presented in [15], the bounc
point distribution is determined by a lower dimensional MMPDE. Since the third type
boundary conditions usually works better than the other two, we use it in our compu
tion. For this reason and for completeness, we give it a more detailed description (in
dimensions) in the following.

Given a boundary segmehtof 9, let I'; be the corresponding boundary segment o
0Qc. Denoting bys the arc-length from a point oR to one of its end points and kiythe
arc-length from a point o' to one of its end points, we can identifywith | = (0, £)
andI'c with 1. = (0, £¢). Thens = s(¢, t) is determined by

st 3( as> ¢ € (0,6
ot /M2t (M2ac\ o) e

(15)
s(0) =0, s(t) =¢,

whereM, considered as function efandt, is the one-dimensional monitor function. In our
computation, we tak¥ as the projection of the two-dimensional monitor functi®along
the boundary; i.e., i is the unit tangent vector along the boundary tivé¢s, t) = t" Gt.
Having obtained the arc-length coordinates for the boundary points, the corresponc
physical coordinates are obtained through interpolation and the definition of the bound

3.4. Monitor Functions

The key to the success of the described MMPDE approach of mesh movementis to de
a proper monitor functio. This issue is studied in [5] and a few guidelines are also give
there. Consider the two-dimensional case. Generally, the monitor function can be defi
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through its eigen-decomposition, i.e.,
G =2V + AV (vH)T, (16)

wherevandv! are normalized eigen-vectors that are perpendicular to each other. To perf
mesh adaptation in the gradient direction of the physical solutienu(x, t), a class of
monitor functions can be constructed by choosing

Vu . .
||Vu|| =+/1+ ||Vu||?3, x,is afunction ofi;. a7

The choices., = 1/A; andX, = A, lead to the monitor functions

1
G=———[l +(Vu)(Vu)'] and G =+/1+|Vul2l, (18)
v/ 1+ |Vu?
which correspond to the method based on harmonic mappings [8] and Winslow’s met|
[25], respectively. The generalization of the one-dimensional arc-length monitor functic

G = [l + (Vu(Vu)']*?, (19)

stays between the above two in the sense that the corresponding chdigésfar

It should be pointed out that monitor functions based on solution gradient is not alway
best option and may fail in many cases. Instead, a better construction is based on som:
of error indicators such as an interpolation error estimate. For instance, if mesh adag
along gradient direction is desired, we can defireda, as in (17) but computg; using
an error indicator. Since it needs lengthy discussion on error estimates, we will not disc
this topic further in the rest of the paper. Instead, we refer the interested reader to [6]
the details of using error indicators for mesh movement.

3.5. Control of Mesh Concentration

The monitor functions defined in the previous section lacks explicit control of me:
concentration. In fact, the monitor functions may over or under concentrate mesh po
in regions of large solution gradient or errors, upon the distribution and magnitude of |
solution gradient or the error indicator and thus upon problems and used numerical sche
This will certainly make the underlying moving mesh method less robust.

A common remedy is to introduce a parameter (denoted)liy control the intensity of
mesh adaption. This issue has been discussed in one dimension by several researcher
see [1, 2, 22]. Particularly, Beckett and Mackenzie [1] define

1

g=1+alux/¥™, a=-—"——,
X (Juxx| V™)

wherem is an integer and-) denotes the average over the domain, based on the equid
tribution principle (see (11)). They apply an adaptive scheme with this monitor function
the finite difference solution of a singularly perturbed, two-point boundary value proble
and obtain a uniform convergence rate.

The application of the idea of Bedkteand Mackenzie is not so straightforward in two
dimensions. This is because the exact equidistribution principle such as (11) does not
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or at least is unknown so far in two dimensions. Moreoeis now a matrix. Nevertheless,
something can still be done with (16) and (17). Recall that mesh adaption along direct
v(vl) is primarily dominated by the change bf(x,) alongv(vh) [5]. With (17), A, is
defined as a function df;, and mesh adaption is controlled by. Like in one dimension,
we can expect that mesh points will be concentrated in regions vihéseelatively large.
Thus, we define

A =14 ag, a:L (20)

#)L-pB)

where¢ = \/1+ || Vu||2—1 andpB € (0, 1) is a user-defined parameteg ¢an be de-
fined asp = +/1+ EZ — 1 when an error indicatoE is available.) It is easy to see that
wheng¢ ~ (¢), A1 = 1/(1 — B), and an almost uniform mesh results. Note that we us
¢ = +/1+ || Vu||?2 — linstead oy = | Vu|| to avoid the possible discontinuity ®iu = 0.
Itis easy to verify

_ JoMdx— [odx [ (ap)dx

P Jo A dx  Jo+ag)dx’

(21)

That is, indicates the concentration in the region of lasgeor A;. Thus, introduction of
parametepg allows for effective control of mesh adaption.

3.6. Smoothing of Monitor Functions

It is common practice to smooth the monitor function in moving mesh methods. Tt
is because the computed monitor function is often very non-smooth. At the same tim
smoother monitor function leads to a smoother mesh and also makes the MMPDE easi
integrate. In our computation, we use the arc-length monitor function (19) and the followi
smoothing algorithm. Lex, be a mesh point i2 and§,, the corresponding mesh point
Qc. Then we define

Joie,) G de
& e —

G(Xp) fc(gp) dé ,

(22)

whereC(€,) C Q. is the union of neighboring grid cells havigg as one of their vertices.
We also find that temporal smoothing of the monitor function is often useful. This

especially true for the case of generating the initial adaptive mesh using the MMPI

approach, where the temporal smoothing helps to obtain convergent meshes. We use

G" « 0.2G"1 4+ 0.8G" (23)

in our computation although this has only a minor effect on time accurate integration.

4. DISCRETIZATION AND SOLUTION IN TWO DIMENSIONS

In this section we consider the discretization and solution of MMPDE (14) in tw
dimensions. For convenience, we rewrite the physical and computational coordinate
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x = (x,y)T and¢ = (£, n)T. The Jacobian and contravariant base vectors are given by

11y 11—y
J = — al = — n a2 = — . 24
XeYn — XnYe, 3 {_Xn]» 3 { Xe ] (24)
MMPDE (14) can be rewritten as
X _ ax, (25)

T— =
at
where the differential operatdk is defined as

1
/a2, +aZ,+ b+ b2

92 32 32 0 0
an— +2a0——+ap—+b—+bh—|; (26
{118524- 128§8n+ 223772+ 18$+ 2377 (26)

and the coefficients are defined by (13), so

ap=a-G1t.a, ap,=a' -Gl a ap=a- -Gl .a

-1 -1
bl:_al(ae 4 0C a2>’

9E an @)
Gt 9G™1

b, = —a°. at a2 .

2 ( 9E + on

We use finite differences for the spatial discretization and the backward Euler scheme
the time integration of (25). For simplicity, we assume that the computational damain
is rectangular and a fixed, orthogonal mégh, ne), j =0,...,J, k=0, ..., K}isgiven
on it. Denote the mesh at=ty by x" = {X] , = X(&j, 1k, tn)} and letu" = {uf } be the
physical solution on the mesh. Givehandu”, the monitor functiorG" = G(x", u") de-
fined in (19) is computed through (16) by first transforming the first-order partial derivativ
of u from the physical coordinates to the computational ones and then approximating tt
with central finite differences. The monitor function is then smoothed by applying (22) fo
times. For notation convenience, the smoothed monitor function will still be denotéd by

Let

Xj+1.k — Xj k Xjk — Xj-1k
AeXjy = j+1, ik Vexix = j j ’
Ejr1— & & —§&1
8§Xj = 2 Xj+1k = Xjk  Xjk = Xj-1k
T =&\ & —§ §j— &

Xj+1k+1 = Xj+1k-1 — Xj—1k+1 + Xj-1k-1
Ejr1— &M —nj-1)

)

and define difference operators in thedirection similarly. The numerical scheme for
MMPDE (25) is then given by

n+1 n
Xik =Xk _

Atn

T A (28)
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where A; « is a finite difference approximation of the differential operafoat (&, ) =
(&j, mo), viz.,

1
Ajk= > > > > a1 k07 + 2812 k87, + 822 k87
\/alljk+a22jk+bl,jk+b2,jk
by ik + |byj b1 ik —|byi by ik + |b2,j by ik + b2,
4 PLik | 1,jk|A$+ 1,k — | 1,Jklvé+ 2, ik + | 2,]k|Aﬂ+ 2, ik + | 2,1klvn .
2 2 2 2
(29)

Here, (25) is linearized by freezing the monitor functi®mnd coefficients; 1, a12, 822, b,
andb, at timet = t,. An upwind treatment has been used in (28) for the first-order term
because the coefficients andb, can be large. But it is worth mentioning that the use of
upwinding is by no means always critical, and a central discretization for the first-orc
terms often leads to very comparable results.

The scheme (28) has a nine-point stencil. The resulting algebraic system is solved \
the preconditioned conjugate residual method until the mean-square-root residual is
than 10°8. With the natural ordering of the unknown variables, the preconditioner is co
structed as the modified (row sum equivalence), incomplete LU decomposition basec
13 points including the nine stencil points and four fill-in points with indi¢gs- 2, k),
(j—2,k+1),(j +2,k—1),and(j + 2, k). The construction of this ILU decomposition
is standard, and the interested reader is referred to [21, 23] for the details.

The implementation of the Dirichlet type of boundary conditions is trivial. They can b
solved simultaneously with (28). The implementations of the other two types of bound:
conditions are not so straightforward. In principle, the orthogonal conditions can also
solved simultaneously with (28). However, because they are generally nonlinear and
existence of the solution to the problem with the these conditions is unclear, we adopt
an alternating procedure. More precisely, we first solve (28) with the fixed boundary poir
The arc-length coordinates of the new boundary points are then obtained by requiring t
distribution to be proportional to that of the points on the mesh line next to the bounda
The physical coordinates of the new points are finally obtained through interpolation fre
the arc-length coordinates and the definition of the boundary. Generally speaking,
extrapolation method only generates meshes nearly orthogonal to the boundary. Fol
same reason, the third type of boundary conditions is also implemented alternately. T
is, the new point distribution{;(?j(l} on all segments of the boundary are first obtainec
by solving the one-dimensional MMPDE (15) and using the boundary definition. The nq
Iocations{x?;fl} of the interior grid points are then generated using (28) with the fixed ne
boundary points.

Itis necessary to select the time step gizgdynamically for efficient integration of (25).
This is done by using a standard technique in the context of numerical ODES. Specifice

we use
) tol
Atny1 = Aty min| 4, max| 0.1, 0.84 eis ) ) (30)

where tol is a prescribed error tolerance atte error estimate. Let"** be the solution
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of (28). We define the error estimateas: X! — x™1 with X"+ being the solution of

) > oh+1 > >
T = Aj_kx?_fk + Aj,k%, for (&j, m) € Qe

Kt =X for (£, nk) on 9 (31)

which is a second-order scheme for the linearized equation with the differential op&ratc
approximated at timg,. Schemes (28) and (31) have the same algebraic structure so t
the coefficient matrix and the preconditioner built for (28) can also be used for solving (3

One may notice that (28) is actually a semi-implicit scheme with special linearization st
that the operatoA is calculated at the previous time step. This is different from many oth
semi-implicit schemes where the exact Jacobian matrix of the underlying problem is u
and treated implicitly. Moreover, the error estimatis also based on such a specially lin-
earized equation. As a consequence, an upper boussthasoften necessary. Since the time
scale of the MMPDE is proportional tq we suggest to choose a bound depending onit; i.e

Aty < T Atmax (32)

Then, a universal value can be used Adp,a (the bound of the scaled time step).

It is trivial to apply the above-described scheme to the generation of adaptive mes
for given steady-state functions. However, the application is not so straightforward for til
dependent problems. In principle, the (time dependent) physical PDE and the MMPDE
be solved either simultaneously or alternately. But, simultaneous solution does not s
practical in two and three dimensions, since the coupling of the mesh and physical solu
is often highly nonlinear and many structures (such as ellipticity and sparsity) in each
the mesh and physical PDEs may be lost in the coupled system. The following alterna
procedure is used here for time dependent problems. To avoid possible confusion, we
hereafterAt for the time step size associated with the MMPDE axigh, for that related
to the physical PDE.

Alternating procedure. Assume that the physical solutiofi, the meshx", and a time
step sizeAtyny,n are given at time = t,.

(i) Compute the monitor functio®"(x) = G(x, t,) usingu" andx" and smooth it.
G" is understood as a continuous function in the sense of interpolation.

(i) Integrate the MMPDE over the time perio@ [t, + Atpnyn] USINg variable step
sizeAt, and monitor functiors (x) = G"(x). More than one sub-step may be needed for th
integration to reach = t, + Atynyn. When this happens, the monitor function is updatec
from mesh to mesh via linear interpolation. The obtained mesh is denotet hy

(i) Integrate the physical PDE with a fixed or variable step size. The mesh a
mesh speed are calculated using linear interpolation:

x(t) = L~y Tt Aloryn = Alonyn ~ Ly

(33)
Alphyn Alphyn

(iv) When a variable step integrator is used in step (iii), the physical PDE m:
actually be integrated over a smaller s®&Rnyn < Atphyn. In this case, the mesh at the
actual new time levet, . ; = t, + Atphyn should be updated a8+1 := X(ty41).

(v) Go to the next step with the step size predicted by the physical PDE solver.



764 WEIZHANG HUANG

In this procedure, the time step size used for integrating the MMPDE is implicitl
bounded, i.e. Aty < Atphyn OF Almax < Atphyn/T (see (32)). There are several reasons
why we need a more restrictive bound than this and therefore more than one sub-step
in step (ii). First, the time stefrtynyn is determined only by the physical PDE and its solver,
A different At, should be used for solving the MMPDE since its time scale depends
T and is often different from that of the physical PDE. Moreover, a smallisrdesired
in many cases for a prompter response of the mesh to the change of the physical solu
Thus, we should use a smallat, than Aty . Furthermore, accuracy consideration also
requires more than one sub-step and thus smaligican be used in step (ii). Recall that
MMPDE (25) is highly nonlinear, and the numerical scheme (28) is semi-implicit and bas
on a special linearization. A few more sub-steps are often necessary to obtain reasor
accuracy in the computed mesh. Finally, the alternating implementation of the bound
conditions and the MMPDE may also cause trouble, because one cycle of alternatio
often insufficient for obtaining a reasonably convergent solution. A remedy is to use mq
than one sub-step for integrating the MMPDE.

Based on the above consideration, we use

. At —
At, < min { % rAtmaX} (34)

for some positive integen. This condition guarantees that at leassub-steps are taken
in step (ii).

5. NUMERICAL EXPERIMENTS

In this section we present some numerical results obtained with the scheme descr
in the previous sections for two examples with analytical physical solutions. The thi
type of boundary point specification is used. Monitor function (19) is calculated by a
proximating the solution gradient with central finite differences based on solution valu
at grid points, and the tolerance tol for controlling mesh time steps in (30) is taken
tol = 1072,

ExamPLE 4.1. The first example is to generate an adaptive mesh for the model probl
of interaction of an oblique shock and a boundary layer. The physical solution is represer
by a single scalar functioa(x, y) = tanh(Ry) — tanh(R(0.5x — y — 1)) with R = 50 on
the rectangular domain [@] x [0, 2]. This example has been used by several researche
to demonstrate their mesh adaptive methods; e.g., see [11]. We solve this problem usin
moving mesh method with = 1. Sinceu = u(x, y) is time independent, adaptive meshes
can also be obtained by directly solving the steady-state mesh equation, i.e., (25) witt
the mesh speed term. But, since the mesh equation is highly nonlinear, nonlinear iterz
methods such as Newton's often fail to converge. The interested reader is referred to [18
for discussion on numerical solution of steady-state mesh equations for the mesh gener:
case (i.e.u =1).

Figure 1 shows a typical result obtained on a331 mesh with3 = 0.5, Afmax = 0.5,
and temporal smoothing for the monitor function. The computation is terminated when
L, norm of the mesh speed is smaller tharr@Qafter about 69 time steps). It is clear
that the grid points of the convergent adaptive mesh are concentrated around the rec
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FIG.1. Atypical resultfor Example 1 obtained with= 0.5 (concentration control parametef)i,., = 0.5,
and the temporal smoothing of the monitor function. 4a) the L, norm of the mesh speeé,, E;, andE, as
functions of time steps. (b) Convergent mesh of size<R1.

of the boundary layer and oblique shock. The mesh speed decreases monotonically.
also interesting to see that after about 23 steps, the time, step\bitakes its allowed
maximum (0.5 in this case) and maintains the value for the rest of computation. Also shc
in Fig. 1 are theL, norm of the constant-, linear-, and quadratic-polynomial interpolatio
errorskg, E;, andE,. All of them drop quickly in the first 20 steps and stay nearly constar
afterward. The interpolation errors are much smaller on the convergent adaptive mesh
those on the uniform one. In fadEy drops by a factor of about &; by 21, andg; by 39.
This result indicates that a higher order method may gain more from mesh adaption th
lower order one.

We next solve the problem with a biggaft .« = 2.0. The results are shown in Fig. 2.
Like the caseAtmax = 0.5, At reaches its allowed maximum quickly. But in this case, the
mesh speed does not decrease monotonically any more. Instead, it decreases monotor
to about 0.001, then goes up to 0.01 (constaints used during this period), and oscillates
for the rest of computation. The oscillations also occur in the mashand interpolation
errors. A convergent mesh cannot be obtained for this case. We stop the computation
200 time steps. The mesh at this time is shown in Fig. 2b. Interestingly, we can see tha
mesh, as well as the interpolation errors, are not much different from those shown in Fig
Thus, the oscillations will not do much harm when the method is applied to steady-st

@ (0)

01>

0.01

0001 |

Voou S e
0.0001 | dt A= Y S W mu !
mesh speed —¥~— Y ¢ 05 1
1e05 | | ] CT
E2 —- /EE
1e-06 =i . . =
) 50 100 150 200 ©

©
e
o
-

time step 15 2 25 3 35 4

FIG.2. Resultsfor Example 1 obtained with= 0.5 andAtm.x = 2.0. (@) At, theL, norm of the mesh speed,
E,, E1, andE; as functions of time steps. (b) The mesh of size<331 at the 200th time step.
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FIG. 3. Results for Example 1 obtained witkt,., = 1 and (a) with or (b) without temporal smoothing for
the monitor function.

problems, since we can always stop the computation after a certain number of steps
obtain a mesh sufficiently close to the convergent one. However, the situation is differ
for time dependent problems. Oscillatory mesh movement may make the physical P
difficult to integrate and even cause numerical instability.

We carry out a number of computations with tighter tolerance tol. We have found that 1
oscillations associated with largast cannot be totally eliminated by reducing tolerance
tol although their average and amplitude do decrease with tol. Comparatively, tempc
smoothing of the monitor function provides a more effective tool in suppressing the os
lations. We show in Fig. 3 the results obtained with and without temporal smoothing.
can be seen that without temporal smoothing, the mesh speed oscillates and no conve
mesh can be obtained fat.x = 1.0, whereas this happens only at a largég,ax (about
2 in this case) when temporal smoothing is applied.

Hence, it is essential to limit in order to obtain a convergent solution to the MMPDE.
Unfortunately, the choice of the bound is generally problem dependent. In principle
suitable bound has to be found by trial and error. Nevertheless, it is often not difficult
take a working value foAinax In fact, we have found thaki,,x = 0.5 works for all of
the tested problems. Moreover, the choice\df,ox Seems to be independent of mesh size
For the current case, we have tried various meshes, including the finest orel?4] and
At max = 0.5 works fine.

Next we demonstrate how mesh adaption (concentration) can be controlled with par:
eter 8. To this end, we carry out computations wigth= 0.2, 0.5, and 0.8 and calculate
the percent of the mesh points at whighis greater than its average. The convergen
meshes and the percentages are shown in Fig. 4. The concentration contpisgtbarly
effective, namely, a smaller value gfleads to lower mesh adaption while a larger value
results in a higher mesh concentration. One may also notice from Fig. 4d that the compt
percentage does not match up with the used valye ofi the convergent mesh. This is
mainly due to the fact that, defined in (21), is based on the distributiome@f wherex is
not proportionally related to the mesh density or mesh concentration.

EXAMPLE 4.2. The next example is the well-known Burgers’ equation

M _aau-— u—g —ug, te 02515 (35)
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FIG. 4. Results for Example 1 obtained witht,,, = 0.1 and various values g8 (concentration control
parameter). Convergent meshes are shown i (&)0.2, (b) 8 = 0.5, and (c)8 = 0.8, and (d) shows the per-
centage (as a function of time steps) of mesh points at whiéh greater than its average.

defined in the unit square. The initial and Dirichlet boundary conditions are chosen so
the problem has exact solutiorix, y, t) = 1/{1 + exp[(x + y — t)/(2a)]}. This solution
describes a straight-line wave i6 constant along ling + y = ¢) moving in the direction

0 = 45°. We takea = 0.005.

We use finite differences for the spatial discretization of (35) and the three-stage th
order singly diagonally implicit Runge—Kutta (SDIRK) method [7] for the time integratior
The alternating procedure described in Section 3 is used for solving the extended sy
consisting of the physical and mesh PDEs. A fixed g, = 0.01 is used. The adaptive
initial mesh is obtained by solving the MMPDE until the mesh speed is less thanf0
In this initial mesh generation process, we take 1 and compute the arc-length monitor
function with the initial solution. In the results presented in the following, the (global) err

t
elt) = / llu — uemPY; dt (36)
0

is used. We take\tox = 0.5 in (34) for this example.

Figure 5 shows a typical moving mesh at various time instants. The mesh is obtained\
t = 0.01, B = 0.5, andm = 3 (so three sub-steps in each alternation between solving t
mesh and physical PDEs are used for integrating the MMPDE). The corresponding m
speed and error are plotted in Fig. 6a as functions of time. It can be seen from these re
that the mesh points are concentrated around the moving wave front.

Figure 6b shows the mesh speed and error obtained without restrictirgecall that
the alternating solution procedure implies thlinax < Atphy/T. Thus, we actually have
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FIG. 5. A typical 31x 31 mesh at various time instants is obtained for Example 2 with0.01, 8 = 0.5,
andm = 3. (a)t = 0.26, (b)t = 0.5, (c)t = 0.98, and (d} = 1.46.

Atmax= 1for this case sincAty,y = v = 10-2. Comparing the results in Fig. 6, it is clear
that without restriction oAt, (or more precisely, with a too larget,,), the mesh speed and
thus mesh movement becomes oscillatory, whereas a more smoothly moving mesh re
with a suitable limit ofAt,. It is interesting to observe that the error functegh) behaves
similarly for these two cases, although the smoother one does lead to a better result.

Figure 7, together with Fig. 6a, shows the effect oh the solution and mesh movement.
Note that the result for = 0.01 is nearly identical to that with = 0.001.

a b
10 T T T T T T 10 T T T T T T
error arror
mesh speed ~——-- + mesh speed ~~-—-
e P ] 1l
- - S o e S
0.1 F E 0.1
0.01 1 0.01 |
0.001 | E 0.001 |
0.0001 | 0.0001 |
1e-05 = + * " s L 10-05 s
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

t t

FIG. 6. The error function and mesh speed for Example 2 are plotted as functions of time. These results
obtained (a) withfh = 3) or (b) without bounding the time step size for mesh movement.
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FIG. 7. The error function and mesh speed for Example 2 are obtained with various vatuggpf = 0.1
and (b)r = 0.001. See also Figs. 5 and 6a for the results with 0.01.

We show in Fig. 8 (also see Fig. 5c) the mesh at0.98, the error function, and the
percentage of mesh points at whichis greater than its average for various valueg of
The effectiveness for usingto control mesh concentration is clear. From Fig. 8c, one ca
see that for the cage = 0.2, the mesh points are less concentrated and this causes the e
to grow quickly with time. Figure 8d shows that the percentage of the mesh points w
largex; does not stay constant in time. It takes its maximum as the solution wave cros
the liney=—x att=1. That is, more mesh points are concentratetl-atl near the
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FIG. 8. Results for Example 2 are obtained with various valueg.qg) 8 = 0.2 andt = 0.98, (b)8 = 0.8
andt = 0.98, and (c) and (dp = 0.2, 0.5, and 0.8.
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FIG. 9. The errors are obtained for Example 2 with various mesh sizes.

solution wave. This can also be seen clearly from the mesh in Fig. 5 and the mesh spe:
Fig. 6a.

Finally, we investigate the convergence of the moving mesh method. Results obtai
with various numbers of mesh points are shown in Fig. 9 and Table I. Note that in t
81 x 81 case, the mesh is highly concentrated around the wave front (see Figs. 11a
11b), and a small size of time step has to be used for solving the physical PDE. T
can be clearly seen in Table I, where it is shown that the easth an 81x 81 mesh
andAtpny = 0.01 yields a result no better than that obtained with a441 mesh. For this
reason, we usAtyny = 103 forthe 81x 81 case and plot the resultin Fig. 9, along with the
results obtained witlAty,, = 0.01 for the other cases. The error decreases as the number
mesh points is increased. However, the convergence is only about the first-order, instes
the expected second-order. This result seems to be consistent with the observation mac
one-dimensional problems [17]: with the moving mesh method, the error decreases qui
for small numbers of mesh points, then slowly at about the first-order rate, and finally at

TABLE |
CPU Time and Errors Obtained with Fixed, One-Level, and Two-Level
Moving Meshes for Example 4.2

Physical mesh JM=KM Total CPU % CPU for mesh e(t = 1.5) (ratio)

Moving 21x 21 1 36 67% 1.72e-3
41x 41 1 364 67% 6.52e-4 (2.64)
81 x 81° 1 2052 67% 7.77e-4 (0.84)
81 x 81° 1 5827 67% 4.06e-4 (1.61)
Moving 21x 21 1 36 67% 1.72e-3
41x 41 2 82 29% 4.21e-4 (4.09)
81x 81 4 289 8% 1.13e-4 (3.73)
Fixed  21x21 10 6.34e-2
41x 41 55 2.26e-2 (2.81)
81x 81 306 6.29¢-3 (3.59)

Note.Atyny, = 1072 and 10° are used for casesandb, respectively, on an 8% 81 mesh.
The other results are obtained witt,, = 1072,
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rate of second-order for large numbers of mesh points. A similar observation is also m
in [2].

6. TWO-LEVEL MESH MOVEMENT

The efficiency of the moving mesh method described in the previous sections can fur
be improved when combined with a two-level mesh movement strategy. With this strate
the mesh movement is performed on a relatively coarse mesh and a fine mesh use
solving the physical PDE is obtained via interpolation. This is reasonable since, unl
the physical solution, the mesh points do not have to be calculated to high accurac
similar idea has been used by Fiedler and Trapp [9] for the dynamic generation of adar
meshes using an elliptic differential equation system and by Mulhobaadi [20], where
an adaptive finite difference mesh is used for the pseudo-spectral solution of near-sing
problems.

For the two-level mesh movement, the relation between the coarse and fine meshes
be defined first. Denote the coarse mesl{\(lxﬂjk, yjck), j=0,...,3%k=0,...,Kand
the fine mesh by(Xjk, yjk), j =0, ..., J, k=0, ..., K}. They can be related through the
projection

X[k = Xac(i)kcho: Yk = Yac(i).kcd: (37)
where the array§C andKC satisfy

JC0)=0<JCA) <---<JICI =3I,

(38)
KC(0) =0 < KC(1) < --- < KC(K® = K.
In our computation, we choose
JC(j)=j-IM, j=01,...,73°%
(1) =] J (39)

KC(j) =k-KM, k=0,1,...,KS,

whereJM andKM are two prescribed positive integers. (Note thak andJ®, K¢ must sat-
isfy J = J¢. IJMandK = K¢ . KM.) To capture the fine structures of the physical solution
the monitor function is first computed on the fine mesh and then projected via area ave
ing to the coarse mesh. Having obtained the new coarse mesh by solving the MMPDE
compute the fine mesh at the new time step via linear interpolation.

Note that the coarse mesh cannot be chosen too coarse to catch the fine structures
physical solution. On the other hand, it cannot be chosen too fine to reduce the neces
overhead of mesh movement. Computational experience shows that chdj¢del=2,3,4
often lead to satisfactory results.

Table I and Fig. 10 show the results obtained with the moving mesh method combined v
the two-level mesh movement strategy for Burgers’ equation (Example 4.2). We use
a coarse mesh of size 2121 and two fine meshes of sizes 441 and 81x 81 which
correspond taJM=KM=2 and 4, respectively. For comparison, we also list the resul
obtained with fixed, uniform meshes of three corresponding sizes. The CPU time liste
Table | is in seconds on a Dell workstation with single Pentium 111 500 MHz processor.
is interesting to point out that the CPU time used for mesh generation is about 67% of
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FIG. 10. Example 2: The error is obtained for Example 2 witk= 0.01, 8 = 0.5, andm = 3 and with fixed
and two-level moving meshes.
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FIG. 11. 81 x 81 meshes and their closer views near point (0.5, 0.5). The dashed line indicates the posi
of the wave front. (a) Mesh at= 0.998 obtained by solving the MMPDE witit,,, = 10-3. (b) A closer view
of the mesh in (a). (c) Mesh at= 0.98 obtained by linearly interpolating a 2121 moving mesh (the two-level
mesh movement). (d) A closer view of the mesh in (c).
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total CPU time when only a one-level mesh is used (for both mesh movement and phys
PDE), and it decreases to 29% and 8% for the two-level mesh movemeriiMatKM=2
and 4, respectively. The efficiency gain is significant. The second-order convergence of
method is also clear. Furthermore, unlike the case with a one-level movirg38Imesh,

a larger time stepAtyny = 0.01 works well for all of the three cases with the two-level
mesh movement. This is due to the fact that a fine mesh obtained by interpolating a cos
moving mesh is less concentrated and skewed than one obtained by directly solving
MMPDE; see Fig. 11.

7. CONCLUSIONS

Several practical aspects of formulating and numerically solving the moving mesh P
have been studied in the previous sections. It was shown how the MMPDE can be expre
in the form (7). The simplicity of (7) allows for the use of concepts, spatial balance a
invariance, in formulating more robust MMPDESs. For instance, the fungtion(7) can
be chosen so that it is easier to choasand integrate the resultant MMPDE. With the
particular choice of the functiom = 1/,/";(aZ + b?), we obtained MMPDE (14), which
is well spatially balanced and is invariant under Gandx scaling transformations. These
properties are desired for the robustness of the MMPDE.

Defining a proper monitor function is always the key to the success of the movi
mesh method. The monitor function can be constructed based on solution gradient or ¢
estimates. However, the so-defined monitor function often under or over concentrates n
points in regions of large gradient or errors. A remedy was proposed in Section 3 to all
for an explicit control of mesh concentration. The basic idea behind the method is to sc
A1, the leading eigen-value of the monitor function, by its average.

A numerical scheme for solving the two-dimensional MMPDE was presented. It is bas
on finite differences for the spatial discretization and the backward Euler method for the i
integration. The MMPDE is linearized in a special manner such that the differential opere
(26) is calculated at the current time steg- t,. The resulting linear algebraic system is
solved with the preconditioned conjugate residual method with the preconditioner be
constructed as the modified incomplete LU decomposition based on 13 stencil points
dynamical selection procedure is used for time steps. Note that the mesh equations f
andy can be solved separately and one coefficient matrix and preconditioner calculate
a time step can be then used in solving both equations and estimating the errors, whi
needed for the time step selection.

Numerical results were presented for two test problems having analytical solutions. -
effectiveness of the proposed method for controlling mesh concentration was demonstr:
It was also found that a suitable bound on the size of time steps is essential for integra
the MMPDE in order to obtain convergent meshes for steady-state problems and smoc
moving meshes for time dependent problems. For time dependent problems, we use
alternating solution procedure for the extended system consisting of the physical and n
PDEs. Use of more sub-steps in integrating the MMPDE often produces meshes \
smoother movement.

Finally, atwo-level mesh movement strategy was discussed. The numerical results shc
that the overhead of mesh generation in the moving mesh method can be significa
reduced when combined with this strategy. The two-level mesh movement also leads
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better convergence rate and allows for use of larger time steps in integrating the phys
PDE than the one-level mesh movement.
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