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Moving mesh partial differential equations (MMPDEs) are used in the MMPDE
moving mesh method to generate adaptive moving meshes for the numerical solution
of time dependent problems. How MMPDEs are formulated and solved is cru-
cial to the efficiency and robustness of the method. In this paper, several practical
aspects of formulating and solving MMPDEs are studied. They include spatial bal-
ance, scaling invariance, effective control of mesh concentration, bounds on time
steps, multiple sub-steps, and two-level mesh movement. Numerical results are also
given. c© 2001 Academic Press
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1. INTRODUCTION

In this paper we are concerned with moving mesh methods for the numerical solution of
time dependent partial differential equations (PDEs). Within a moving mesh method, a mesh
equation is employed to move the mesh points around in an orderly fashion while keeping
them concentrated in regions of large solution variations. The key to the development of
the method is to formulate and efficiently solve the mesh equation. In the past, a variety of
one- and two-dimensional moving methods have been developed and successfully applied
to many problems; e.g., see [12] and references therein. However, more robust and efficient
methods have to be developed, especially in multi-dimensions.

We have recently developed the so-called moving mesh PDE (MMPDE) approach of
moving mesh methods [13–16]. With this approach, an adaptive moving mesh is considered
as the image of a reference mesh through a time dependent coordinate transformation.
A continuous mesh equation, or an MMPDE, is then used to determine the coordinate
transformation. The MMPDE is formulated as a modified gradient flow equation of a
general adaption functional, which involves various properties of the mesh and physical
solution. In one dimension, the approach has unified many existing methods and provided
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a framework to study their properties and develop robust and efficient new methods [13,
14]. The two-dimensional development of the method has also been very promising [15,
16]. It has been successfully used for generating both structured and unstructured meshes
for a number of problems [4].

However, it should be pointed out that a number of issues related to the formulation and
solution of the MMPDE are still unclear. For example, there are a variety of ways to define
a modified gradient flow equation of a functional, and all the resultant MMPDEs work with
a certain degree of success, although some of them are not as robust as others. Explicit
control of mesh adaption is yet to be developed to avoid under or over concentration of
mesh points. With the MMPDE approach, the physical PDE is replaced with an extended
system consisting of the physical PDE and the mesh PDE. The system must be solved
numerically for both the physical solution and the mesh. It is suggested in [15, 16] to use
simultaneous solution methods for one-dimensional problems but alternating procedures
in two dimensions for efficiency reasons. But, this type of alternating solution procedures
may cause trouble in accuracy and stability since the physical and mesh PDEs can have
significantly different time scales. Moreover, the time scale of the MMPDE depends on a
user prescribed parameterτ , which makes it even more difficult to design a robust alternating
solution procedure.

The objective of this paper is twofold. The first one is to attempt to offer answers to some
of the questions raised by the aforementioned issues related to formulation and solution of
the MMPDE. The other is to provide more implementation details than those provided in
[15, 16] so that the interested reader would find an easier way to use the MMPDE moving
mesh method for solving problems. To be more specific, we will show how to express
the MMPDE in a simple form. Based on this form, we will then introduce the concepts
of spatial balance and scaling invariance and study how to construct MMPDEs having
these desired properties. Construction of the monitor function will be briefly discussed
and a method will be presented for effective control of mesh concentration. Issues arising
from the solution of MMPDEs, such as bounding time steps to get convergent meshes and
employing multiple sub-steps for smoother mesh movement, will be investigated. A simple
two-level mesh movement strategy will also be presented for further reducing the overhead
of mesh generation for the numerical solution of PDEs.

An outline of the paper is as follows. In Section 2, the formulation of MMPDEs is
briefly described. In Section 3, the concepts of spatial balancing and scaling invariance
are introduced and discussed. Construction of the monitor function and effective control
of mesh concentration are also addressed in Section 3. The discretization and solution
procedure are given in Section 4 for two-dimensional MMPDEs. The choice of the time
step bound and its effect are addressed also in this section. Numerical results are given
in Section 5 for two problems having analytical solutions. A two-level mesh movement
strategy is introduced for further improving the efficiency of the moving mesh method, and
some numerical results using it are presented in Section 6. Finally, Section 7 contains the
conclusions.

2. MOVING MESH PDEs

Let Ä be the domain where the physical problem is defined, and letÄc be the compu-
tational domain that is chosen artificially for the purpose of mesh generation. Denote by
x = (x1, x2, x3)T andξ = (ξ1, ξ2, ξ3)T the physical and computational coordinates inÄ
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andÄc, respectively. Then, adaptive moving meshes forÄ can be generated as the images
of a reference mesh inÄc through a one-to-one, time dependent, coordinate transformation
or mappingx = x(ξ, t).

Mappingx = x(ξ, t) is defined in [15, 16] as the solution of the gradient flow equation
of a quadratic functional that involves various properties of the mesh and physical solution.
Specifically, denoting byξ = ξ(x, t) the inverse mapping ofx = x(ξ, t), we define the
mesh adaption functional as

I [ξ] = 1

2

∫
Ä

∑
i

(∇ξ i)T G−1∇ξ i dx, (1)

where∇ is the gradient operator with respect tox andG, the so-called monitor function, is
a three-by-three symmetric positive definite matrix which interconnects the mesh and the
physical solution. The MMPDE is then constructed as the (modified) gradient flow equation
of I [ξ],

∂ξ i

∂t
= p

τ
∇ · (G−1∇ξ i), i = 1, 2, 3, (2)

whereτ > 0 is the user-defined parameter used for adjusting the time scale of mesh move-
ment andp is a positive function to be chosen such that the MMPDE has desired properties.
(1) is defined in terms of inverse mappingξ = ξ(x, t). It is well known that the so de-
fined functional is less likely to result in a singular coordinate transformation than a similar
functional defined in terms ofx = x(ξ, t); e.g., see [8]. In practice, however, it is more
convenient to work directly withx = x(ξ, t) since it explicitly defines the locations of mesh
points. Also,x = x(ξ, t) is easier to approximate numerically thanξ = ξ(x, t), which, by
construction, has sharp layers in regions where mesh adaption is needed.

The MMPDE forx = x(ξ, t) can be obtained by interchanging the roles of dependent
and independent variables in (2). To this end, it is convenient to introduce the covariant and
contravariant base vectors

ai = ∂x
∂ξ i

, ai = ∇ξ i, i = 1, 2, 3, (3)

which are related by

ai = 1

J
aj × ak, ai = Ja j × ak, ai · al = δl

i , (i, j, k) cyclic, (4)

whereδl
i is the Kronecker delta function, andJ is the Jacobian

J = a1 · (a2× a3). (5)

With help of the following transformation relations

∇ =
∑

i

ai ∂

∂ξ i
= 1

J

∑
i

∂

∂ξ i
Jai,

∂ J

∂ξ l
= J

∑
i

ai · ∂ai

∂ξ l
,
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∂ai

∂ξ l
= −

∑
s

(
ai · ∂as

∂ξ l

)
as,

∂x
∂t
= −

∑
i

ai
∂ξ i

∂t

that seem to first appear in [24], (2) can be transformed into

τ
∂x
∂t
= − p

J

∑
i, j

ai
∂

∂ξ j
(Jaj · G−1ai), (6)

or in a fully non-conservative form

τ
∂x
∂t
= p

[∑
i, j

(ai · G−1aj)
∂2x
∂ξ i∂ξ j

−
∑
i, j

(
ai · ∂G−1

∂ξ j
aj

)
∂x
∂ξ i

]
. (7)

Functional (1) is very general, including several well-known steady-state methods as
special cases. Indeed, we get the method based on harmonic maps [8] by takingG =
M/
√

det(M) for some symmetric, positive definite matrixM , and Winslow’s mesh adaption
method [25] forG = w I with some weight functionw. The latter is generalized by Brackbill
and Saltzman [3] to include terms for further mesh smoothness and orthogonality control.
Theirs has become one of the most popular methods used for steady-state mesh adaption.

We conclude this section by remarking that formula (7) is much simpler and easier to
implement than those given in [15, 16]. For Winslow’s monitor functionG = w I , (7) can
further be simplified as

τ
∂x
∂t
= p

w2

∑
i, j

(ai · aj)
∂

∂ξ i

(
ω
∂x
∂ξ j

)
. (8)

3. ASPECTS RELATED TO THE FORMULATION OF MMPDEs

We study in this section several aspects which are related to the formulation of the
MMPDE and important to the efficiency and robustness of the moving mesh method. They
include the choices of functionp and the monitor function, scaling invariance, boundary
correspondence, and the control of mesh concentration.

3.1. Choice of Function p

Ideally, p should be chosen so that all the mesh points move with a uniform time scale. An
MMPDE, which has a uniform time scale, will be easier to integrate numerically and will
work more reliably with a constant value ofτ . Unfortunately, it is unclear mathematically
how a PDE can be made to have a uniform time scale. We use here a heuristic, spatial balance
criterion, i.e., choosingp such that the coefficients, especially those of the second-order
derivatives, change evenly over the domain. In other words, we would like to choosep such
that the MMPDE behaves more like a diffusion equation with an almost constant diffusion
coefficient.

In [15, 16], p is taken as 1/
√

g, whereg is the determinant ofG, motivated by the
theory of harmonic maps. However, it is more appropriate to takep = 1/ d

√
g, whered is
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the dimension of the spatial domain, from the view point of dimensional analysis. The latter
leads to the MMPDE

τ
∂x
∂t
= 1

d
√

g

[∑
i, j

(ai · G−1aj)
∂2x
∂ξ i∂ξ j

−
∑
i, j

(
ai · ∂G−1

∂ξ j
aj

)
∂x
∂ξ i

]
. (9)

Noticing that G−1 = O(1/ d
√

g), we estimate that the coefficients of (9) have the size∑
i ‖ai‖2/( d

√
g)2. Thus, the MMPDE is spatially balanced if∑

i

‖ai‖2/( d
√

g)2 ≈ constant. (10)

To see if (10) is true, we first point out that in one dimension, (10) reads as

1

g

∂ξ

∂x
≈ constant, (11)

which is the well-known equidistribution principle [14]. (10) can then be regarded as a
generalization of the equidistribution principle. On the other hand, (11) can be derived from
the Euler–Lagrange equation of functional

I [ξ ] = 1

2

∫
Ä

1

g

(
∂ξ

∂x

)2

dx, (12)

which is the one-dimensional version of functional (1). Thus, functional (1) can also be
considered as a generalization of the equidistribution principle. Since both (1) and (10) are
generalizations of the equidistribution principle, we can intuitively believe that the solution
to (9), the gradient flow equation of (1), satisfies (10), at least whenτ is small. In this sense,
the coefficients of (9) will change evenly over the domain, and therefore, (9) is spatially
balanced.

The simplest way to obtain well spatially balanced MMPDEs is to scale the terms on
the right-hand side of (7) by some bound on the coefficients. For instance, we can take

p = 1/
√∑

i(a
2
ii + b2

i ), where

ai j = ai · G−1aj,
(13)

bi = −
∑

j

ai · ∂G−1

∂ξ j
aj = −ai · (∇ · G−1).

Note that the change of the monitor function has been taken into account in the scaling. The
corresponding MMPDE is given by

τ
∂x
∂t
= 1√∑

i

(
a2

ii + b2
i

)
[∑

i, j

aij
∂2x
∂ξ i∂ξ j

+
∑

i

bi
∂x
∂ξ i

]
. (14)

By construction, the coefficients of the MMPDE have sizeO(1).
Like row scaling used in Gaussian elimination for solving linear algebraic systems [10],

it is difficult to understand theoretically how spatial balancing may affect the conditioning
(or stiffness) of the MMPDE. Nevertheless, computational experience does show that the
above two choices forp often work much better than no balancing (i.e.,p = 1).
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3.2. Scaling Invariance

Scaling invariance is important in formulating MMPDEs. It often indicates the robustness
of MMPDEs to handle problems with physical domains and monitor functions having
various scales. We are concerned here with thex, ξ, andG scaling invariance. The definition
is as follows. An MMPDE is calledx (ξ, orG) scaling invariant if it is invariant under scaling
transformationx→ αx(ξ→ αξ, or G→ αG) for all α > 0. Thex scaling invariance is
considered by suppressing the fact that the monitor function is a function ofx.

It is easy to verify that (9) isξ scaling invariant while (14) isx andG scaling invariant.
Thus, MMPDE (9) will change if we re-scale the physical domain and/or the monitor
function. Obviously, the change can be compensated for by using a different value ofτ .
However, this is not good since a different value ofτ must be used to obtain the same result
after we simply re-scaleÄ and/orG. On the other hand, a universal value forτ will work
well with (14) for physical domains and monitor functions with various scales, provided
that the computational domain is chosen to have a standard size.

3.3. Boundary Correspondence

To completely specify the coordinate transformation, the MMPDEs must be supple-
mented with suitable boundary conditions. Generally speaking, we can use three types of
boundary conditions. The first is Dirichlet conditions with which the boundary points are
held fixed. The second is orthogonal ones, for which one set of coordinate lines are required
to be orthogonal to the physical boundary. For the other, presented in [15], the boundary
point distribution is determined by a lower dimensional MMPDE. Since the third type of
boundary conditions usually works better than the other two, we use it in our computa-
tion. For this reason and for completeness, we give it a more detailed description (in two
dimensions) in the following.

Given a boundary segment0 of ∂Ä, let 0c be the corresponding boundary segment of
∂Äc. Denoting bys the arc-length from a point on0 to one of its end points and byζ the
arc-length from a point on0c to one of its end points, we can identify0 with I = (0, `)
and0c with Ic = (0, `c). Thens= s(ζ, t) is determined by

τ
∂s

∂t
= 1√

M2+ (Mζ )2

∂

∂ζ

(
M
∂s

∂ζ

)
, ζ ∈ (0, `c),

(15)
s(0) = 0, s(`c) = `,

whereM , considered as function ofs andt , is the one-dimensional monitor function. In our
computation, we takeM as the projection of the two-dimensional monitor functionG along
the boundary; i.e., ift is the unit tangent vector along the boundary thenM(s, t) = tT Gt.
Having obtained the arc-length coordinates for the boundary points, the corresponding
physical coordinates are obtained through interpolation and the definition of the boundary.

3.4. Monitor Functions

The key to the success of the described MMPDE approach of mesh movement is to define
a proper monitor functionG. This issue is studied in [5] and a few guidelines are also given
there. Consider the two-dimensional case. Generally, the monitor function can be defined
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through its eigen-decomposition, i.e.,

G = λ1v(v)T + λ2v⊥(v⊥)T , (16)

wherevandv⊥ are normalized eigen-vectors that are perpendicular to each other. To perform
mesh adaptation in the gradient direction of the physical solutionu = u(x, t), a class of
monitor functions can be constructed by choosing

v= ∇u

‖∇u‖ , λ1 =
√

1+ ‖∇u‖2, λ2 is a function ofλ1. (17)

The choicesλ2 = 1/λ1 andλ2 = λ1 lead to the monitor functions

G = 1√
1+ |∇u|2 [ I + (∇u)(∇u)T ] and G =

√
1+ |∇u|2I , (18)

which correspond to the method based on harmonic mappings [8] and Winslow’s method
[25], respectively. The generalization of the one-dimensional arc-length monitor function,

G = [ I + (∇u)(∇u)T ]1/2, (19)

stays between the above two in the sense that the corresponding choice forλ2 is 1.
It should be pointed out that monitor functions based on solution gradient is not always a

best option and may fail in many cases. Instead, a better construction is based on some sort
of error indicators such as an interpolation error estimate. For instance, if mesh adaption
along gradient direction is desired, we can definev andλ2 as in (17) but computeλ1 using
an error indicator. Since it needs lengthy discussion on error estimates, we will not discuss
this topic further in the rest of the paper. Instead, we refer the interested reader to [6] for
the details of using error indicators for mesh movement.

3.5. Control of Mesh Concentration

The monitor functions defined in the previous section lacks explicit control of mesh
concentration. In fact, the monitor functions may over or under concentrate mesh points
in regions of large solution gradient or errors, upon the distribution and magnitude of the
solution gradient or the error indicator and thus upon problems and used numerical schemes.
This will certainly make the underlying moving mesh method less robust.

A common remedy is to introduce a parameter (denoted byα) to control the intensity of
mesh adaption. This issue has been discussed in one dimension by several researchers; e.g.,
see [1, 2, 22]. Particularly, Beckett and Mackenzie [1] define

g = 1+ α|uxx|1/m, α = 1

〈|uxx|1/m〉 ,

wherem is an integer and〈·〉 denotes the average over the domain, based on the equidis-
tribution principle (see (11)). They apply an adaptive scheme with this monitor function to
the finite difference solution of a singularly perturbed, two-point boundary value problem
and obtain a uniform convergence rate.

The application of the idea of Beckeṫt and Mackenzie is not so straightforward in two
dimensions. This is because the exact equidistribution principle such as (11) does not exist
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or at least is unknown so far in two dimensions. Moreover,G is now a matrix. Nevertheless,
something can still be done with (16) and (17). Recall that mesh adaption along direction
v(v⊥) is primarily dominated by the change ofλ1(λ2) alongv(v⊥) [5]. With (17), λ2 is
defined as a function ofλ1, and mesh adaption is controlled byλ1. Like in one dimension,
we can expect that mesh points will be concentrated in regions whereλ1 is relatively large.
Thus, we define

λ1 = 1+ αφ, α = β

〈φ〉(1− β) , (20)

whereφ =
√

1+ ‖∇u‖2− 1 andβ ∈ (0, 1) is a user-defined parameter. (φ can be de-
fined asφ = √1+ E2− 1 when an error indicatorE is available.) It is easy to see that
whenφ ≈ 〈φ〉, λ1 ≈ 1/(1− β), and an almost uniform mesh results. Note that we use
φ =

√
1+ ‖∇u‖2− 1 instead ofφ = ‖∇u‖ to avoid the possible discontinuity at∇u = 0.

It is easy to verify

β =
∫

Ω λ1dx− ∫Ω dx∫
Ω λ1 dx

=
∫

Ω(αφ) dx∫
Ω(1+ αφ) dx

. (21)

That is,β indicates the concentration in the region of largeαφ or λ1. Thus, introduction of
parameterβ allows for effective control of mesh adaption.

3.6. Smoothing of Monitor Functions

It is common practice to smooth the monitor function in moving mesh methods. This
is because the computed monitor function is often very non-smooth. At the same time, a
smoother monitor function leads to a smoother mesh and also makes the MMPDE easier to
integrate. In our computation, we use the arc-length monitor function (19) and the following
smoothing algorithm. Letxp be a mesh point inÄ andξp the corresponding mesh point
Äc. Then we define

G(xp)←
∫

C(ξp)
G(x(ξ)) dξ∫

C(ξp)
dξ

, (22)

whereC(ξp) ⊂ Äc is the union of neighboring grid cells havingξp as one of their vertices.
We also find that temporal smoothing of the monitor function is often useful. This is

especially true for the case of generating the initial adaptive mesh using the MMPDE
approach, where the temporal smoothing helps to obtain convergent meshes. We use

Gn← 0.2Gn−1+ 0.8Gn (23)

in our computation although this has only a minor effect on time accurate integration.

4. DISCRETIZATION AND SOLUTION IN TWO DIMENSIONS

In this section we consider the discretization and solution of MMPDE (14) in two
dimensions. For convenience, we rewrite the physical and computational coordinates as



FORMULATION AND SOLUTION OF MMPDEs 761

x = (x, y)T andξ = (ξ, η)T . The Jacobian and contravariant base vectors are given by

J = xξ yη − xηyξ , a1 = 1

J

[
yη
−xη

]
, a2 = 1

J

[−yξ
xξ

]
. (24)

MMPDE (14) can be rewritten as

τ
∂x
∂t
= Ax, (25)

where the differential operatorA is defined as

A = 1√
a2

11+ a2
22+ b2

1 + b2
2

[
a11

∂2

∂ξ2
+ 2a12

∂2

∂ξ∂η
+ a22

∂2

∂η2
+ b1

∂

∂ξ
+ b2

∂

∂η

]
; (26)

and the coefficients are defined by (13), so

a11 = a1 · G−1 · a1, a12 = a1 · G−1 · a2, a22 = a2 · G−1 · a2,

b1 = −a1 ·
(
∂G−1

∂ξ
a1+ ∂G−1

∂η
a2

)
,

(27)

b2 = −a2 ·
(
∂G−1

∂ξ
a1+ ∂G−1

∂η
a2

)
.

We use finite differences for the spatial discretization and the backward Euler scheme for
the time integration of (25). For simplicity, we assume that the computational domainÄc

is rectangular and a fixed, orthogonal mesh{(ξ j , ηk), j = 0, . . . , J, k = 0, . . . , K } is given
on it. Denote the mesh att = tn by xn = {xn

j,k = x(ξ j , ηk, tn)} and letun = {un
j,k} be the

physical solution on the mesh. Givenxn andun, the monitor functionGn = G(xn, un) de-
fined in (19) is computed through (16) by first transforming the first-order partial derivatives
of u from the physical coordinates to the computational ones and then approximating them
with central finite differences. The monitor function is then smoothed by applying (22) four
times. For notation convenience, the smoothed monitor function will still be denoted byG.

Let

1ξx j,k = x j+1,k − x j,k

ξ j+1− ξ j,
, ∇ξx j,k = x j,k − x j−1,k

ξ j − ξ j−1
,

δ2
ξx j,k = 2

ξ j+1− ξ j−1

(
x j+1,k − x j,k

ξ j+1− ξ j
− x j,k − x j−1,k

ξ j − ξ j−1

)
,

δ2
ξηx j,k = x j+1,k+1− x j+1,k−1− x j−1,k+1+ x j−1,k−1

(ξ j+1− ξ j−1)(η j+1− η j−1)
,

and define difference operators in theη direction similarly. The numerical scheme for
MMPDE (25) is then given by

τ
xn+1

j,k − xn
j,k

1tn
= Aj,kxn+1

j,k , (28)
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where Aj,k is a finite difference approximation of the differential operatorA at (ξ, η) =
(ξ j , ηk), viz.,

Aj,k = 1√
a2

11, jk +a2
22, jk + b2

1, jk + b2
2, jk

[
a11, jkδ

2
ξ + 2a12, jkδ

2
ξη+a22, jkδ

2
η

+ b1, jk + |b1, jk |
2

1ξ + b1, jk − |b1, jk |
2

∇ξ + b2, jk + |b2, jk |
2

1η+ b2, jk + |b2, jk |
2

∇η
]
.

(29)

Here, (25) is linearized by freezing the monitor functionG and coefficientsa11, a12, a22, b1,
andb2 at timet = tn. An upwind treatment has been used in (28) for the first-order terms
because the coefficientsb1 andb2 can be large. But it is worth mentioning that the use of
upwinding is by no means always critical, and a central discretization for the first-order
terms often leads to very comparable results.

The scheme (28) has a nine-point stencil. The resulting algebraic system is solved with
the preconditioned conjugate residual method until the mean-square-root residual is less
than 10−8. With the natural ordering of the unknown variables, the preconditioner is con-
structed as the modified (row sum equivalence), incomplete LU decomposition based on
13 points including the nine stencil points and four fill-in points with indices( j,− 2, k),
( j − 2, k+ 1), ( j + 2, k− 1), and( j + 2, k). The construction of this ILU decomposition
is standard, and the interested reader is referred to [21, 23] for the details.

The implementation of the Dirichlet type of boundary conditions is trivial. They can be
solved simultaneously with (28). The implementations of the other two types of boundary
conditions are not so straightforward. In principle, the orthogonal conditions can also be
solved simultaneously with (28). However, because they are generally nonlinear and the
existence of the solution to the problem with the these conditions is unclear, we adopt here
an alternating procedure. More precisely, we first solve (28) with the fixed boundary points.
The arc-length coordinates of the new boundary points are then obtained by requiring their
distribution to be proportional to that of the points on the mesh line next to the boundary.
The physical coordinates of the new points are finally obtained through interpolation from
the arc-length coordinates and the definition of the boundary. Generally speaking, this
extrapolation method only generates meshes nearly orthogonal to the boundary. For the
same reason, the third type of boundary conditions is also implemented alternately. That
is, the new point distributions{xn+1

j,k } on all segments of the boundary are first obtained
by solving the one-dimensional MMPDE (15) and using the boundary definition. The new
locations{xn+1

jk } of the interior grid points are then generated using (28) with the fixed new
boundary points.

It is necessary to select the time step size1tn dynamically for efficient integration of (25).
This is done by using a standard technique in the context of numerical ODEs. Specifically,
we use

1tn+1 = 1tn min

(
4,max

(
0.1, 0.84

√
tol

‖e‖∞

))
, (30)

where tol is a prescribed error tolerance ande the error estimate. Letxn+1 be the solution
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of (28). We define the error estimate ase= x̂n+1− xn+1 with x̂n+1 being the solution of

τ
x̂n+1

j,k − xn
j,k

1tn
= Aj,kx̂n+1

j,k + Aj,k
xn

j,k − xn+1
j,k

2
, for (ξ j , ηk) ∈ Äc

x̂n+1
j,k = xn+1

j,k , for (ξ j , ηk) on ∂Äc (31)

which is a second-order scheme for the linearized equation with the differential operatorA
approximated at timetn. Schemes (28) and (31) have the same algebraic structure so that
the coefficient matrix and the preconditioner built for (28) can also be used for solving (31).

One may notice that (28) is actually a semi-implicit scheme with special linearization such
that the operatorA is calculated at the previous time step. This is different from many other
semi-implicit schemes where the exact Jacobian matrix of the underlying problem is used
and treated implicitly. Moreover, the error estimatee is also based on such a specially lin-
earized equation. As a consequence, an upper bound on1tn is often necessary. Since the time
scale of the MMPDE is proportional toτ , we suggest to choose a bound depending on it; i.e.,

1tn ≤ τ1t̄max. (32)

Then, a universal value can be used for1t̄max (the bound of the scaled time step).
It is trivial to apply the above-described scheme to the generation of adaptive meshes

for given steady-state functions. However, the application is not so straightforward for time
dependent problems. In principle, the (time dependent) physical PDE and the MMPDE can
be solved either simultaneously or alternately. But, simultaneous solution does not seem
practical in two and three dimensions, since the coupling of the mesh and physical solution
is often highly nonlinear and many structures (such as ellipticity and sparsity) in each of
the mesh and physical PDEs may be lost in the coupled system. The following alternating
procedure is used here for time dependent problems. To avoid possible confusion, we use
hereafter1t for the time step size associated with the MMPDE and1tphy for that related
to the physical PDE.

Alternating procedure. Assume that the physical solutionun, the meshxn, and a time
step size1tphy,n are given at timet = tn.

(i) Compute the monitor functionGn(x) = G(x, tn) usingun andxn and smooth it.
Gn is understood as a continuous function in the sense of interpolation.

(ii) Integrate the MMPDE over the time period [tn, tn +1tphy,n] using variable step
size1tn and monitor functionG(x) = Gn(x). More than one sub-step may be needed for the
integration to reacht = tn +1tphy,n. When this happens, the monitor function is updated
from mesh to mesh via linear interpolation. The obtained mesh is denoted byxn+1.

(iii) Integrate the physical PDE with a fixed or variable step size. The mesh and
mesh speed are calculated using linear interpolation:

x(t) = t − tn
1tphy,n

xn+1+ tn +1tphy,n − t

1tphy,n
xn. (33)

(iv) When a variable step integrator is used in step (iii), the physical PDE may
actually be integrated over a smaller step1̂tphy,n < 1tphy,n. In this case, the mesh at the
actual new time leveltn+1 = tn + 1̂tphy,n should be updated asxn+1 := x(tn+1).

(v) Go to the next step with the step size predicted by the physical PDE solver.
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In this procedure, the time step size used for integrating the MMPDE is implicitly
bounded, i.e.,1tn ≤ 1tphy,n or 1t̄max≤ 1tphy,n/τ (see (32)). There are several reasons
why we need a more restrictive bound than this and therefore more than one sub-step used
in step (ii). First, the time step1tphy,n is determined only by the physical PDE and its solver.
A different1tn should be used for solving the MMPDE since its time scale depends on
τ and is often different from that of the physical PDE. Moreover, a smallerτ is desired
in many cases for a prompter response of the mesh to the change of the physical solution.
Thus, we should use a smaller1tn than1tphy,n. Furthermore, accuracy consideration also
requires more than one sub-step and thus smaller1tn can be used in step (ii). Recall that
MMPDE (25) is highly nonlinear, and the numerical scheme (28) is semi-implicit and based
on a special linearization. A few more sub-steps are often necessary to obtain reasonable
accuracy in the computed mesh. Finally, the alternating implementation of the boundary
conditions and the MMPDE may also cause trouble, because one cycle of alternation is
often insufficient for obtaining a reasonably convergent solution. A remedy is to use more
than one sub-step for integrating the MMPDE.

Based on the above consideration, we use

1tn ≤ min

{
1tphy,n

m
, τ1t̄max

}
(34)

for some positive integerm. This condition guarantees that at leastm sub-steps are taken
in step (ii).

5. NUMERICAL EXPERIMENTS

In this section we present some numerical results obtained with the scheme described
in the previous sections for two examples with analytical physical solutions. The third
type of boundary point specification is used. Monitor function (19) is calculated by ap-
proximating the solution gradient with central finite differences based on solution values
at grid points, and the tolerance tol for controlling mesh time steps in (30) is taken as
tol = 10−2.

EXAMPLE 4.1. The first example is to generate an adaptive mesh for the model problem
of interaction of an oblique shock and a boundary layer. The physical solution is represented
by a single scalar functionu(x, y)= tanh(Ry)− tanh(R(0.5x − y− 1)) with R= 50 on
the rectangular domain [0, 4]× [0, 2]. This example has been used by several researchers
to demonstrate their mesh adaptive methods; e.g., see [11]. We solve this problem using the
moving mesh method withτ = 1. Sinceu = u(x, y) is time independent, adaptive meshes
can also be obtained by directly solving the steady-state mesh equation, i.e., (25) without
the mesh speed term. But, since the mesh equation is highly nonlinear, nonlinear iteration
methods such as Newton’s often fail to converge. The interested reader is referred to [18, 19]
for discussion on numerical solution of steady-state mesh equations for the mesh generation
case (i.e.,u ≡ 1).

Figure 1 shows a typical result obtained on a 31× 31 mesh withβ = 0.5,1tmax= 0.5,
and temporal smoothing for the monitor function. The computation is terminated when the
L2 norm of the mesh speed is smaller than 10−6 (after about 69 time steps). It is clear
that the grid points of the convergent adaptive mesh are concentrated around the regions
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FIG. 1. A typical result for Example 1 obtained withβ = 0.5 (concentration control parameter),1t̄max= 0.5,
and the temporal smoothing of the monitor function. (a)1t , the L2 norm of the mesh speed,E0, E1, andE2 as
functions of time steps. (b) Convergent mesh of size 31× 31.

of the boundary layer and oblique shock. The mesh speed decreases monotonically. It is
also interesting to see that after about 23 steps, the time, step size1t takes its allowed
maximum (0.5 in this case) and maintains the value for the rest of computation. Also shown
in Fig. 1 are theL2 norm of the constant-, linear-, and quadratic-polynomial interpolation
errorsE0, E1, andE2. All of them drop quickly in the first 20 steps and stay nearly constant
afterward. The interpolation errors are much smaller on the convergent adaptive mesh than
those on the uniform one. In fact,E0 drops by a factor of about 4, E1 by 21, andE2 by 39.
This result indicates that a higher order method may gain more from mesh adaption than a
lower order one.

We next solve the problem with a bigger1tmax= 2.0. The results are shown in Fig. 2.
Like the case1tmax= 0.5,1t reaches its allowed maximum quickly. But in this case, the
mesh speed does not decrease monotonically any more. Instead, it decreases monotonically
to about 0.001, then goes up to 0.01 (constant1t is used during this period), and oscillates
for the rest of computation. The oscillations also occur in the mesh,1t , and interpolation
errors. A convergent mesh cannot be obtained for this case. We stop the computation after
200 time steps. The mesh at this time is shown in Fig. 2b. Interestingly, we can see that the
mesh, as well as the interpolation errors, are not much different from those shown in Fig. 1.
Thus, the oscillations will not do much harm when the method is applied to steady-state

FIG. 2. Results for Example 1 obtained withβ = 0.5 and1t̄max= 2.0. (a)1t , theL2 norm of the mesh speed,
E0, E1, andE2 as functions of time steps. (b) The mesh of size 31× 31 at the 200th time step.
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FIG. 3. Results for Example 1 obtained with1t̄max= 1 and (a) with or (b) without temporal smoothing for
the monitor function.

problems, since we can always stop the computation after a certain number of steps and
obtain a mesh sufficiently close to the convergent one. However, the situation is different
for time dependent problems. Oscillatory mesh movement may make the physical PDE
difficult to integrate and even cause numerical instability.

We carry out a number of computations with tighter tolerance tol. We have found that the
oscillations associated with larger1t cannot be totally eliminated by reducing tolerance
tol although their average and amplitude do decrease with tol. Comparatively, temporal
smoothing of the monitor function provides a more effective tool in suppressing the oscil-
lations. We show in Fig. 3 the results obtained with and without temporal smoothing. It
can be seen that without temporal smoothing, the mesh speed oscillates and no convergent
mesh can be obtained for1tmax= 1.0, whereas this happens only at a larger1tmax (about
2 in this case) when temporal smoothing is applied.

Hence, it is essential to limit1t in order to obtain a convergent solution to the MMPDE.
Unfortunately, the choice of the bound is generally problem dependent. In principle, a
suitable bound has to be found by trial and error. Nevertheless, it is often not difficult to
take a working value for1tmax. In fact, we have found that1tmax= 0.5 works for all of
the tested problems. Moreover, the choice of1tmax seems to be independent of mesh size.
For the current case, we have tried various meshes, including the finest one 121× 121, and
1tmax= 0.5 works fine.

Next we demonstrate how mesh adaption (concentration) can be controlled with param-
eterβ. To this end, we carry out computations withβ = 0.2, 0.5, and 0.8 and calculate
the percent of the mesh points at whichλ1 is greater than its average. The convergent
meshes and the percentages are shown in Fig. 4. The concentration control withβ is clearly
effective, namely, a smaller value ofβ leads to lower mesh adaption while a larger value
results in a higher mesh concentration. One may also notice from Fig. 4d that the computed
percentage does not match up with the used value ofβ on the convergent mesh. This is
mainly due to the fact thatβ, defined in (21), is based on the distribution ofλ1, whereλ1 is
not proportionally related to the mesh density or mesh concentration.

EXAMPLE 4.2. The next example is the well-known Burgers’ equation

∂u

∂t
= a1u− u

∂u

∂x
− u

∂u

∂y
, t ∈ (0.25, 1.5] (35)
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FIG. 4. Results for Example 1 obtained with1t̄max= 0.1 and various values ofβ (concentration control
parameter). Convergent meshes are shown in (a)β = 0.2, (b)β = 0.5, and (c)β = 0.8, and (d) shows the per-
centage (as a function of time steps) of mesh points at whichλ1 is greater than its average.

defined in the unit square. The initial and Dirichlet boundary conditions are chosen so that
the problem has exact solutionu(x, y, t) = 1/{1+ exp[(x + y− t)/(2a)]}. This solution
describes a straight-line wave (u is constant along linex + y = c) moving in the direction
θ = 45◦. We takea = 0.005.

We use finite differences for the spatial discretization of (35) and the three-stage third-
order singly diagonally implicit Runge–Kutta (SDIRK) method [7] for the time integration.
The alternating procedure described in Section 3 is used for solving the extended system
consisting of the physical and mesh PDEs. A fixed step1tphy= 0.01 is used. The adaptive
initial mesh is obtained by solving the MMPDE until theL2 mesh speed is less than 10−6.
In this initial mesh generation process, we takeτ = 1 and compute the arc-length monitor
function with the initial solution. In the results presented in the following, the (global) error

e(t) =
∫ t

0
‖u− ucomput‖2 dt (36)

is used. We take1tmax= 0.5 in (34) for this example.
Figure 5 shows a typical moving mesh at various time instants. The mesh is obtained with

τ = 0.01, β = 0.5, andm= 3 (so three sub-steps in each alternation between solving the
mesh and physical PDEs are used for integrating the MMPDE). The corresponding mesh
speed and error are plotted in Fig. 6a as functions of time. It can be seen from these results
that the mesh points are concentrated around the moving wave front.

Figure 6b shows the mesh speed and error obtained without restricting1t . Recall that
the alternating solution procedure implies that1tmax≤ 1tphy/τ . Thus, we actually have
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FIG. 5. A typical 31× 31 mesh at various time instants is obtained for Example 2 withτ = 0.01,β = 0.5,
andm= 3. (a)t = 0.26, (b)t = 0.5, (c) t = 0.98, and (d)t = 1.46.

1tmax= 1 for this case since1tphy= τ = 10−2. Comparing the results in Fig. 6, it is clear
that without restriction of1tn (or more precisely, with a too large1tn), the mesh speed and
thus mesh movement becomes oscillatory, whereas a more smoothly moving mesh results
with a suitable limit of1tn. It is interesting to observe that the error functione(t) behaves
similarly for these two cases, although the smoother one does lead to a better result.

Figure 7, together with Fig. 6a, shows the effect ofτ on the solution and mesh movement.
Note that the result forτ = 0.01 is nearly identical to that withτ = 0.001.

FIG. 6. The error function and mesh speed for Example 2 are plotted as functions of time. These results are
obtained (a) with (m= 3) or (b) without bounding the time step size for mesh movement.
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FIG. 7. The error function and mesh speed for Example 2 are obtained with various values ofτ ; (a) τ = 0.1
and (b)τ = 0.001. See also Figs. 5 and 6a for the results withτ = 0.01.

We show in Fig. 8 (also see Fig. 5c) the mesh att = 0.98, the error function, and the
percentage of mesh points at whichλ1 is greater than its average for various values ofβ.
The effectiveness for usingβ to control mesh concentration is clear. From Fig. 8c, one can
see that for the caseβ = 0.2, the mesh points are less concentrated and this causes the error
to grow quickly with time. Figure 8d shows that the percentage of the mesh points with
largeλ1 does not stay constant in time. It takes its maximum as the solution wave crosses
the line y=−x at t = 1. That is, more mesh points are concentrated att = 1 near the

FIG. 8. Results for Example 2 are obtained with various values ofβ. (a)β = 0.2 andt = 0.98, (b)β = 0.8
andt = 0.98, and (c) and (d)β = 0.2, 0.5, and 0.8.
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FIG. 9. The errors are obtained for Example 2 with various mesh sizes.

solution wave. This can also be seen clearly from the mesh in Fig. 5 and the mesh speed in
Fig. 6a.

Finally, we investigate the convergence of the moving mesh method. Results obtained
with various numbers of mesh points are shown in Fig. 9 and Table I. Note that in the
81× 81 case, the mesh is highly concentrated around the wave front (see Figs. 11a and
11b), and a small size of time step has to be used for solving the physical PDE. This
can be clearly seen in Table I, where it is shown that the casea with an 81× 81 mesh
and1tphy= 0.01 yields a result no better than that obtained with a 41× 41 mesh. For this
reason, we use1tphy= 10−3 for the 81× 81 case and plot the result in Fig. 9, along with the
results obtained with1tphy= 0.01 for the other cases. The error decreases as the number of
mesh points is increased. However, the convergence is only about the first-order, instead of
the expected second-order. This result seems to be consistent with the observation made for
one-dimensional problems [17]: with the moving mesh method, the error decreases quickly
for small numbers of mesh points, then slowly at about the first-order rate, and finally at the

TABLE I

CPU Time and Errors Obtained with Fixed, One-Level, and Two-Level

Moving Meshes for Example 4.2

Physical mesh JM=KM Total CPU % CPU for mesh e(t = 1.5) (ratio)

Moving 21× 21 1 36 67% 1.72e-3
41× 41 1 364 67% 6.52e-4 (2.64)
81× 81a 1 2052 67% 7.77e-4 (0.84)
81× 81b 1 5827 67% 4.06e-4 (1.61)

Moving 21× 21 1 36 67% 1.72e-3
41× 41 2 82 29% 4.21e-4 (4.09)
81× 81 4 289 8% 1.13e-4 (3.73)

Fixed 21× 21 10 6.34e-2
41× 41 55 2.26e-2 (2.81)
81× 81 306 6.29e-3 (3.59)

Note.1tphy = 10−2 and 10−3 are used for casesa andb, respectively, on an 81× 81 mesh.
The other results are obtained with1tphy = 10−2.
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rate of second-order for large numbers of mesh points. A similar observation is also made
in [2].

6. TWO-LEVEL MESH MOVEMENT

The efficiency of the moving mesh method described in the previous sections can further
be improved when combined with a two-level mesh movement strategy. With this strategy,
the mesh movement is performed on a relatively coarse mesh and a fine mesh used for
solving the physical PDE is obtained via interpolation. This is reasonable since, unlike
the physical solution, the mesh points do not have to be calculated to high accuracy. A
similar idea has been used by Fiedler and Trapp [9] for the dynamic generation of adaptive
meshes using an elliptic differential equation system and by Mulhollandet al. [20], where
an adaptive finite difference mesh is used for the pseudo-spectral solution of near-singular
problems.

For the two-level mesh movement, the relation between the coarse and fine meshes must
be defined first. Denote the coarse mesh by{(xc

jk, yc
jk), j = 0, . . . , Jc, k = 0, . . . , K c} and

the fine mesh by{(xjk, yjk), j = 0, . . . , J, k = 0, . . . , K }. They can be related through the
projection

xc
j,k = xJC( j ),KC(k), yc

j,k = yJC( j ),KC(k), (37)

where the arraysJCandKC satisfy

JC(0) = 0< JC(1) < · · · < JC(Jc) = J,
(38)

KC(0) = 0< KC(1) < · · · < KC(K c) = K .

In our computation, we choose

JC( j ) = j · JM, j = 0, 1, . . . , Jc,
(39)

KC( j ) = k · KM, k = 0, 1, . . . , K c,

whereJMandKM are two prescribed positive integers. (Note thatJ, K andJc, K c must sat-
isfy J = Jc · JM andK = K c · KM.) To capture the fine structures of the physical solution,
the monitor function is first computed on the fine mesh and then projected via area averag-
ing to the coarse mesh. Having obtained the new coarse mesh by solving the MMPDE, we
compute the fine mesh at the new time step via linear interpolation.

Note that the coarse mesh cannot be chosen too coarse to catch the fine structures of the
physical solution. On the other hand, it cannot be chosen too fine to reduce the necessary
overhead of mesh movement. Computational experience shows that choicesJM, KM=2,3,4
often lead to satisfactory results.

Table I and Fig. 10 show the results obtained with the moving mesh method combined with
the two-level mesh movement strategy for Burgers’ equation (Example 4.2). We use here
a coarse mesh of size 21× 21 and two fine meshes of sizes 41× 41 and 81× 81 which
correspond toJM=KM=2 and 4, respectively. For comparison, we also list the results
obtained with fixed, uniform meshes of three corresponding sizes. The CPU time listed in
Table I is in seconds on a Dell workstation with single Pentium III 500 MHz processor. It
is interesting to point out that the CPU time used for mesh generation is about 67% of the
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FIG. 10. Example 2: The error is obtained for Example 2 withτ = 0.01,β = 0.5, andm= 3 and with fixed
and two-level moving meshes.

FIG. 11. 81× 81 meshes and their closer views near point (0.5, 0.5). The dashed line indicates the position
of the wave front. (a) Mesh att = 0.998 obtained by solving the MMPDE withdtphy = 10−3. (b) A closer view
of the mesh in (a). (c) Mesh att = 0.98 obtained by linearly interpolating a 21× 21 moving mesh (the two-level
mesh movement). (d) A closer view of the mesh in (c).



FORMULATION AND SOLUTION OF MMPDEs 773

total CPU time when only a one-level mesh is used (for both mesh movement and physical
PDE), and it decreases to 29% and 8% for the two-level mesh movement withJM=KM=2
and 4, respectively. The efficiency gain is significant. The second-order convergence of the
method is also clear. Furthermore, unlike the case with a one-level moving 81× 81 mesh,
a larger time step1tphy= 0.01 works well for all of the three cases with the two-level
mesh movement. This is due to the fact that a fine mesh obtained by interpolating a coarse,
moving mesh is less concentrated and skewed than one obtained by directly solving the
MMPDE; see Fig. 11.

7. CONCLUSIONS

Several practical aspects of formulating and numerically solving the moving mesh PDE
have been studied in the previous sections. It was shown how the MMPDE can be expressed
in the form (7). The simplicity of (7) allows for the use of concepts, spatial balance and
invariance, in formulating more robust MMPDEs. For instance, the functionp in (7) can
be chosen so that it is easier to chooseτ and integrate the resultant MMPDE. With the

particular choice of the function,p = 1/
√∑

i(a
2
ii + b2

i ), we obtained MMPDE (14), which
is well spatially balanced and is invariant under theG andx scaling transformations. These
properties are desired for the robustness of the MMPDE.

Defining a proper monitor function is always the key to the success of the moving
mesh method. The monitor function can be constructed based on solution gradient or error
estimates. However, the so-defined monitor function often under or over concentrates mesh
points in regions of large gradient or errors. A remedy was proposed in Section 3 to allow
for an explicit control of mesh concentration. The basic idea behind the method is to scale
λ1, the leading eigen-value of the monitor function, by its average.

A numerical scheme for solving the two-dimensional MMPDE was presented. It is based
on finite differences for the spatial discretization and the backward Euler method for the time
integration. The MMPDE is linearized in a special manner such that the differential operator
(26) is calculated at the current time stept = tn. The resulting linear algebraic system is
solved with the preconditioned conjugate residual method with the preconditioner being
constructed as the modified incomplete LU decomposition based on 13 stencil points. A
dynamical selection procedure is used for time steps. Note that the mesh equations forx
andy can be solved separately and one coefficient matrix and preconditioner calculated at
a time step can be then used in solving both equations and estimating the errors, which is
needed for the time step selection.

Numerical results were presented for two test problems having analytical solutions. The
effectiveness of the proposed method for controlling mesh concentration was demonstrated.
It was also found that a suitable bound on the size of time steps is essential for integrating
the MMPDE in order to obtain convergent meshes for steady-state problems and smoothly
moving meshes for time dependent problems. For time dependent problems, we used an
alternating solution procedure for the extended system consisting of the physical and mesh
PDEs. Use of more sub-steps in integrating the MMPDE often produces meshes with
smoother movement.

Finally, a two-level mesh movement strategy was discussed. The numerical results showed
that the overhead of mesh generation in the moving mesh method can be significantly
reduced when combined with this strategy. The two-level mesh movement also leads to a
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better convergence rate and allows for use of larger time steps in integrating the physical
PDE than the one-level mesh movement.
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