Journal of Computational Physié§4,903-924 (2001)

®
doi:10.1006/jcph.2001.6945, available online at http://www.idealibrary.col DE &l.

Variational Mesh Adaptation: Isotropy
and Equidistribution

Weizhang Huang

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
E-mail: huang@math.ukans.edu

Received May 1, 2001; revised September 14, 2001

We present a new approach for developing more robust and error-oriented mesh
adaptation methods. Specifically, assuming that a regular (in cell shape) and uniform
(in cell size) computational mesh is used (as is commonly done in computation), we
develop a criterion for mesh adaptation based on an error function whose definition
is motivated by the analysis of function variation and local error behavior for linear
interpolation. The criterion is then decomposed into two aspects, the isotropy (or
conformity) and uniformity (or equidistribution) requirements, each of which can be
easier to deal with. The functionals that satisfy these conditions approximately are
constructed using discrete and continuous inequalities. A new functional is finally
formulated by combining the functionals corresponding to the isotropy and unifor-
mity requirements. The features of the functional are analyzed and demonstrated by
numerical results. In particular, unlike the existing mesh adaptation functionals, the
new functional has clear geometric meanings of minimization. A mesh that has the
desired properties of isotropy and equidistribution can be obtained by properly choos-
ing the values of two parameters. The analysis presented in this article also provides
a better understanding of the increasingly popular method of harmonic mapping in
two dimensions. (@ 2001 Elsevier Science
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1. INTRODUCTION

In this article we are concerned with variational methods for generating adaptive mes
for use in the numerical solution of partial differential equations. A variational methc
utilizes a functional to determine the coordinate transformation needed for mesh genera
Such a functional is often formulated to measure difficulties in the numerical approximat
of the physical solution and typically involves a so-called monitor function that is prescrib
by the user to control the mesh adaptation. An important feature of the formulation is
well posedness of the functional, that is, the existence and uniqueness of the minimizer,
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sometimes the maximum principle, should be assured. Generally, the necessary proj
of the nonsingularity of the coordinate transformation is always the most difficult thing
guarantee theoretically, although it does not seem to be a problem numerically for th
systems having a convex computational domain and obeying the maximum principle.

Due to the well-posedness consideration, people usually do not directly use stanc
error estimates in the development of variational methods since they lead to noncor
functionals in two and higher dimensions. Indeed, most of the existing variational methc
have been developed based on other considerations such as geometric ones; e.g., S
4,9, 12, 16, 18, 19, 23, 25] and the books [10, 17, 21, 24] and references therein.
example, Brackbill and Saltzman [4] developed a very popular method by combining me
concentration, smoothness, and orthogonality. Dvinsky [9] used the energy of harmc
mappings as his mesh adaptation functional. Knupp [16, 18] and Knupp and Robidoux [
developed functionals based on the idea of conditioning the Jacobian matrix of the coordir
transformation. Caet al.[5] studied qualitatively the effect of the monitor function on the
behavior of the mesh for a class of functionals. However, the lack of direct connectic
with error estimates in the existing methods makes it tricky to choose a proper moni
function for some practical problems. Most of the existing methods certainly need to
better understood, and new methods that are more robust and more error-estimate—ori
are yet to be developed.

The objective of this article is to present a new approach of developing more rob
and error-oriented mesh adaptation functionals. Specifically, assuming that a regulat
cell shape) and uniform (in cell size) computational mesh is used (as is commonly d
in computation), we develop a criterion for mesh adaptation based on an error funct
whose definition is motivated by the analysis of function variation and local error behav
for linear interpolation. The criterion is further decomposed into two aspects, the isotrc
(or conformity) and uniformity (or equidistribution) requirements, each of which can &
easier to deal with. Functionals that satisfy these conditions approximately are then c
structed using discrete and continuous inequalities. Finally, a new functional is formula
by combining the functionals corresponding to the isotropy and uniformity requiremen
The features of the functional are analyzed and demonstrated by numerical results.

An outline of the article is as follows. In Section 2, several criteria for mesh adaptation
proposed and the mathematical implications of its isotropy and uniformity properties
presented. Sections 3 and 4 are devoted to the derivations of the functionals according t
isotropy and uniformity requirements, respectively. A functional that naturally combin
the functionals developed in Sections 3 and 4 is derived in Section 5. Also in this section,
features of the newly developed functional are analyzed and the Euler—Lagrange equiz
is given. lllustrative numerical results are presented in Section 6. Finally, Section 7 conte
conclusions and comments.

Throughout this article, the terms regularity, isotropy, and conformity are used for ¢
scribing the shape of mesh cells, while the terms uniformity and equidistribution are us
for measuring the change in cell size or volume. Thus, a uniform mesh is not necess:
regular. Only a mesh having equilateral cells can be regular.

2. CRITERIA FOR MESH ADAPTATION

In this section several criteria that are used for constructing mesh adaptation functiot
are developed based on an error function whose definition is motivated by the analysi
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function variation and error estimates for linear interpolation. This error function is differe
from error estimates in the sense that it is used to describe the local behavior of the €
rather than to provide an estimate of its magnitude.

Let Q2 andQ2. be the (simply-connected) physical and computational domaii®,in =
1, 2, or 3, respectively, and denote the coordinates for thexrdlogl€. For a given function
u = u(x) (or its approximation), we seek a coordinate transformatienx(§) : Q; —
(or its inverse mapping = £(X) : Q — Q) such thati(§¢) = u(x(&)) is easier to approx-
imate in .. To this end, we consider the linear element or the function variation over
differential segmend¢ in Q.

ds® = d0)2 4+ dx" dx =de¢" IT[I + vuvuT] I d¢, (1)

whered = (9x)/(9&) is the Jacobian matrix of the coordinate transformation. Ideaky,
x(&) should be chosen such that[l + VuvuT]J = cl, wherel is the identity matrix
andc is a constant. In this way) has constant variation and can be well resolved on
computational mesh that is commonly chosen to be regular and uniform.

The other motivation for easy numerical approximation comes from interpolation ert
estimates. Lefl,u be the linear interpolant af at the vertices of an imaging mesh cell
(say a triangle in two dimensions) and denote the erroEfx) = IT;u — u. Eg can then
be expressed as a quadratic function locally, and its level surfaces form a family of ellip
with a common centex., provided that the Hessian matrix of denoted byH, is positive
definite. The geometric illustration of interpolation at the vertices of the mesh cell is tt
the circum-surface of the cell from this family of ellipses is the level surface of value zel
It is shown by D’Azevedo [6] that fox close tox., Eg can be written as

1
Eo(X) ~ Eg(Xc) — > dx™ H dx,

wheredx = x — X¢, andH is calculated ak = x.. Further, D’Azevedo and Simpson [7]
show that the gradient of the linear interpolation error is given by

Ec(¥) = IV(u— 1wz ~ VdXTHT H dx.

Writing dx = Jdg with d§ = £ — &, we have

1
Eo(X) & Eo(Xc) — Ed&T JTHJd¢,

Ec(X) ~ \/dgT JTHT HJd¢.

Once again, to resolv by linear interpolation on a regular and uniform mesl®ig we
should choose the coordinate transformation such that githéd = cl orJTHTHJ = cl
for some constart.

From the above formulae for the solution variation and linear interpolation error estimat
it is reasonable to assume that some error estimates can be characterized by a qua
function. For this reason, we define a general error function as

E(x) = 1/d¢TITGId¢, (2)
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whereg, is an arbitrary point ir2., dé = £ — &, andG = G(x) is ann by n symmetric
and positive definite matrix that is prescribed by the user and referred to as the mon
function. Without causing confusion, we assume that, in (2) and hereafter, coordinate
and¢ are related by the coordinate transformatioa x(£), andJ™ GJ is calculated ag..
Our goal is then to finat = x(£) such that

1
J’GI=21 or JIG T =cl (3)
C

for some positive constant
Unfortunately, (3) is unachievable in general. To see this, letBng MT™M, we can
rewrite (3) as

@M HAIMHT =cl.
It is easy to verify that
IIMt = /CQ (@)

for arbitrary orthogonal matriQ. For the trivial cas& = | (no adaptation), (4) implies that
the coordinate transformation is orthogonal irrespective of the physical and computatic
domains. Obviously, this is impossible. Hence, (3) can be satisfied only approximately.
To develop functionals that accommodate this criterion, we now replace it with two equ
alent conditions that are easier to deal with. In fact, (3) is equivalent to requiring that 1
eigenvalues oA = J71G1JT are equal and the determinant is constant. Geometricall
these two conditions force the error functiftix) to have an isotropic and uniform distri-
bution. To explain this more clearly, expressiAdn its eigen-decompositioA = UDU T,

whereU is an orthogonal matrix anD = diag(A1, ..., An), we obtain the level surface as
T 1T &2 gi — & ’ P
— ubD—'u —&) = or €) =¢e° 5

Whereé — €. =UT (¢ — &) andeis agiven error level. Then, the isotropy condition means
that the ellipse (5) should be close to a sphere while the uniformity requirement impl
that the volume of the corresponding ellipsoid should be constant with respect to locat
in Q.. Mathematically, we have

Isotropy Criterion: i; = --- = ip; (6)

Uniformity Criterion: /T & = constant 7)
\ i

These are the criteria that will be used for constructing mesh adaptation functionals in
rest of the paper. Note that isotropy is a local property since it describes only the lo
behavior ofE (x), whereas uniformity is a global one because it restricts the change of t
function from place to place.

It is remarked that Knupp and Robidoux [19] obtained an equation similar to (4)
a general conclusion rather than a criterion and used it to analyze a number of exis
functionals, including the one for harmonic mappings.
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3. ISOTROPIC ERROR DISTRIBUTION AND CONFORMITY

We now develop mesh adaptation functionals that satisfy the isotropy criterion appr
imately. Our basic tool is the well-known arithmetic-mean geometric-mean inequality.
application to the eigenvalues éfgives rise to

(1) <

with equality if and only ifA; = --- = A,. The coordinate transformation that approxi-
mately satisfies (6) can thus be obtained by minimizing the difference

e (1)

or its variants.
Noticing that

in =1r(A) = Z(vs‘)TG*lvsi,
1
li"[xi = det(A) = g

whereJ andg are the determinants dfandG, respectively, we rewrite (8) as
n"det(A) < (tr(A)" )
or

r]n/2

n/2
NG < <Z<V$‘)TG-1V§‘> : (10)

Multiplication of (10) by,/g and integration oves2 gives rise to

n/2
n”/2/ d¢ < / @(Z(vgi)TG—lvsi> dx.
Qe Q i
Hence, the mesh adaptation functioaatording to the isotropy criteriois given by
1 n/2
lisol&] = E/ ﬂ(Z(Vfi)TG_1V§i> dx. (11)
§ i

Interestingly, functional (11) can also be derived from the concept of conformal nol
that has been used in the context of the differential geometry to define a whole clas
nonorthogonality measures for linear mappings; e.g., see [22]iL8tbe the space of
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n x n real matrices. A nornN is said to be conformal if there exists a constagt> 0
such that

kndet(B) < [N(B)]"

for any B € %i"" with detB) > 0, with equality if and only ifB is a general orthogonal
matrix. Here, a general orthogonal matrix is defined as the product of a scalar number til
an orthogonal matrix. Examples of conformal norms include

wn-(5(54))

i=1 \ j=1

n n p/2\ 1/p
e - (5 (54) )
j=1 i=1

for some integep > 1. Whenp = 2, «y = n"2 and bothN(B) andNg(B) are equal to
IIB||lg, the Frobenius norm dB.

The definition of the conformal norm implies that the mapping that is closest to confc
mal mappings can be obtained by minimizing the differetitg B)]" — xndet(B)) or its
variants. Using the Frobenius norm, we obtain

n"2detB) < ||B|}.

By letting G = MT M and takingB = J-*M~?, inequality (9) follows from the relations
A= BB, |B||2 =tr(A), and(detB))? = det(A). Thus, the isotropy and conformity cri-
teria lead to the same functional. In this sense, conformity and isotropy are equivalent.

We note thatis, is constant in the case= 1. This reflects the fact that in one dimension
there is no need to impose the isotropy condition since there is only one eigen-direct
In two dimensions)s, is the energy functional for harmonic mappings. By construction
the harmonic mapping is now the closest one to conformal mappings under the gi
boundary correspondence. Interestingly, when 3, (11) is different from the currently
used functionals, especially the energy of harmonic mappings and the functional studie
[5] that includes Winslow's functional as a special example.

Recall thatisotropy is alocal property which regulates the local behavior of the coordin
transformation. This local regulation seems to have two global impacts. First, the mapp
stretch can vary from place to place in the computational domain. It means that a unifc
computational mesh can sometimes fail to resolve a funétienu(x(€)). The other impact
is that the satisfaction of the isotropy requirement everywhefg ican lead to a very rigid
mapping. Indeed, it is well known that conformal mappings are rigid in the sense that vi
few degrees of freedom are needed to specify them. Thus, a complete specification o
boundary correspondence, as usually done in variational mesh generation and adaptz
can adversely affect and compete with the satisfaction of the isotropy criterion. Unfor
nately, in this competition, it appears that the isotropy criterion or mesh adaptation is alw.
the loser since in most cases the satisfaction of boundary correspondence is mandator
a consequence, mesh adaptation is sacrificed, meaning that not enough mesh point
concentrated or the concentration is misplaced; e.g., see Fig. 4.2 of [5] and Fig. 2 in |
article.
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Another disadvantage of functionial, is that it cannot handle Winslow’s type of monitor
functionG = w(x)1, which is already isotropic, in the sense that there is no mesh adaptat
taking place with this function.

4. UNIFORM ERROR DISTRIBUTION AND EQUIDISTRIBUTION

The uniformity criterion (7) requires that the volume of the ellipsoid contained by tt

error level ellipse (5), ok /[ ]; 4 = /det(A) = 1/(J./0), be constant. In other words, it
is equivalent to

J../g = constant (12)

which, in fact, is a generalization of the (one-dimensional) equidistribution principle [8]
We need the following lemma for constructing the functional based on the equidistribut
principle (12). The interested reader is referred to Haatdgl. [13] for its proof.

LEMMA 4.1. Given a weight functiom (x) with fQ wdx = 1, define

Ur
M () = (/ w|f|rdx)
Q

for arbitrary function f and real number, rwith the limits that M(f) = exp(fQ w log
| f| dx) (geometric mean M, = max| f|, and M_,, = min|f|. Then

M () < Mg(f) (13)

for —oo <r < s < +oo unless(a) M, (f) = Mg(f) = 400, which can happen only if
r > 0or (b) M, (f) = Mg(f) = 0, which can happen only if s 0 or (c) f = constant.

To use this lemma, we take = ,/0, f =1/(J,/0), r =1, ands = q for any real
numberq > 1. Then, the lemma gives rise to

/ V9 dx_/chés [/Qu{%)q dX]l/q, "

with equality if and only if (12) holds. As in the last section, we conclude that give
a boundary correspondence betwe&emand 2., the coordinate transformation that most
closely satisfies (12) or the uniformity criterion can be obtained by minimizing the differen
between both sides of (14). The mesh adaptation functexwirding to the uniformity or
equidistribution criterionis thus obtained as

|ep[£] =

V9
RN dx (15)

Takingq = 2, the functional becomes a least squares functional

1= [ 552 [ g e 5 o
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There exist a number of mesh generation and/or adaptation functionals related to
Jacobian]. For example, Brackbill and Saltzman [4] minimize the functional

/ w(X)J dx
Q

with intent that cells are small in the region where the given weight funatias large.
Steinberg and Roache [23] show that the constrained discrete optimization problem

. x2 .
mmZ o subjectto ~x =1
1

has the equidistributing solutioa/w1 = - - - = X,/wn. Based on the understanding gained
from this example and the analysis of a one-dimensional continuous functional, they prof
to use the functional

/ J2d¢

subject to the global implicit constraint

/QCJdgz/de,

intending to keep the cell volumes constant. These ideas of linking functionals to equidis
bution and using global implicit constraints are carried on by Knupp and Robidoux [19].
his recent work [1], Baines shows, using a discrete identity, that least squares minimiza
of the residual of the divergence of a vector field is equivalent to that of a least squa
measure of equidistribution of this residual.

Equation (15) is different from the currently used functionals. Also, our method of usir
Lemma 4.1 to construct functionals associated with equidistribution is more straightforw:
and convincing. Further, the method can be used in any number of dimensions.

Unfortunately, functionalepis not coercive in two and higher dimensions. The existenc
and uniqueness of its minimizer are not guaranteed [11]. This miakdsrd to use in
practice. In the next section, we will discuss a possible combination of functionals (11) €
(15) to overcome this difficulty.

5. MESH ADAPTATION EQUATION

In the last two sections we have seen that neither functional (11) nor (15) can alone |
to a robust adaptive mesh method. On the other hand, this is not surprising since eithe
them represents only one side of criterion (3). Thus, it is necessary and natural to com
them together.

From (10) we have

ng/2
n"a/2 /Q (Jf)q / f(Z(Vg) G- 1vg> dx. (16)
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For a given valué < [0, 1], a balance of the differences between both sides of (16) and

(14)is
nq/2 \/g
NTGglygl dx — n"9/2 ~ d
0 A@(Z(Vé) vs) x—n /Q(J@q x]

g
/ V9 g / de | |.

o (J/0)° .
The first square bracket represents the isotropy requirement and the second is the unifo
or equidistribution requirement. Thus, by minimizing functional

+ (1 - 6)n"¥?

ng/2
_ INT~—1lgei . ng/2 «/—
|[5]_9/Q\/§<§i:(vg) G vg) dx + (1 — 20)n" /Q(J[)q dx, (17)

whered € [0, 1], we expect to find a coordinate transformation that accommodates the t
requirements. Note that the two integrals on the right-hand side have the same dimen:
In one dimension| [¢] has the form

Ig] = (1 - 9)/{(}8‘5() dx

Regarding well posedness, we first note thahfgf2 > 1, the first part of [£] is convex,
and the existence, uniqueness, and the maximum principle for its minimizer are guarant
e.g., see [11, 22]. It is unknown to us if this result can also apply to the whole function
But, one can easily see thidt] is coercive ifé e (0, 1/2]. Moreover, whem = 1/2, only
the first part of the functional remains, vit[£] becomes

. | \ a2
14[&] = 2/9«/§<Z(V§')TG1VE'> dx. (18)

Thus, it is reasonable to conjecture that the minimizer[g}l exists foro € (0, 1/2]. For
this reason, we will consider values@bnly within the range (0, A2]. It is also interesting
to mention that functiondls, can be obtained from (17) by simply takigg= 1 irrespective
of 6.

We now derive the Euler—Lagrange equation for functidipgl for q > 1. For simplicity,
(17) is rewritten as

Y
_ T —1 _ y \/g
|[g]_e/ (Z(vg) vg) dx + (1—26)n A(J\@q dx,  (19)

where

— 1 nq

C=gam® 7=7%
Denoteg = >, (V&' HTG-1VEl Forthe purpose of well posedness, itis assumedithal
andq > 1 are chosen such that> 1. With this notation, the Euler-Lagrange equation cat
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be written as

. s o @A=20qn g/ 1 q8)(]_ .
\Y {Oyﬂy G Ve + 5 (JJ@) o =0, i=1...,n. (20)

Practically, it is more convenient to compute= x(§) instead of its invers€ = £(x).
Interchanging the roles of the dependent and independent variables, we have the consen
form

_ q
a 29)qnW§< 1 ) 3_"_]=o, i—1...n

-1~-1 i
Zasjua) [GyﬁV G Ve + 5 5

(21)

and the nonconservative form

IRy (W;ag )]
n 9()/7;1) [22”3 ((élai)(c_alaj)T Zak(ak)T) a;;);,-
- .Z (? ((a) G'al Z(a) B(GE )ak>> dE ] = ;Zin?Jﬁ;y[

< [Xj:@ (aj>T)3;ani + Z (} aaélr) ] 0 22

wherea, = (3x)/(d¢') anda = V&' are the covariant and contravariant base vectors th:
are related by

Z((a)TG 'al)

o1
a = ja,- x ax  with (i, j, k) cyclic.

6. NUMERICAL EXPERIMENTS

To demonstrate various features of the developed mesh adaptation functional, in
section we present some two-dimensional numerical results obtained mainly for functic

u(x, y) = —100((x—0.5)2+(y—0.5)?) (23)

defined in the unit squar€. is chosen to be the unit square. Since our purpose here is
explore the features of functional (17), we use a uniform boundary correspondence betw
Q and 2. and no smoothing of the monitor function in our computations. But, we woul
like to emphasize that in practice, an adaptive boundary correspondence and a few sw
of a low-pass filter for smoothing the monitor function are often necessary, and sometir
can be crucial, for accuracy and efficiency of variational methods; e.g., see [14].

The mesh equation (22) is discretized with central finite differences and solved us
the moving mesh PDE approach [15]. With this approach, a derivadixg/ (9t) with
respect to pseudo-timeis added to the mesh equation (22) and the resultant parabo
system is integrated using a modified backward Euler scheme with which the coefficie
of terms (3x)/(d&") and (3%x)/(d&'9&1) are calculated at the previous time level. The
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FIG. 1. Results obtained with monitor functioB; = | + |H|. The left and right columns correspond to
Case A:(g, 0) = (2,0.1) and Case B(q, 0) = (2, 0.5), respectively.

nonlinear algebraic system is solved using a preconditioned conjugate gradient met
The converged mesh is obtained when the root-mean-square norm of the residual is
than 10°%. All computations start with a uniform mesh of size 441.

In the computations, the following four monitor functions are used,

Gy= I +|H|,
Gz = /detGy)l,
Gsz= |+ Vuvu)',
Ga = \/detGa)l,



914 WEIZHANG HUANG

13 r
125
12 1
115
1 F
105

converged mesh converged mesh

08 T 08

06 LE

ad

04

0 02 04 06 08 1 [} 02 0.4 06 03 1
X X

FIG. 2. (Continued from Fig. 1) Results obtained with monitor funct®n= | + |H|. The left and right
columns correspond to Case &= 1 (harmonic mapping) and the uniform mesh case, respectively.

where [H| = Vdiag(|u1l, ..., lun)VT, assuming that the eigen-decomposition of the
Hessian matrix ofi, H, is given byVdiag(u1, . . ., un)V . The definition ofG; is based on
the error estimat&, of linear interpolationG; is the commonly used arc-length monitor
function. G, and G4 are Winslow’s type monitor functions associated with the first- an
second-order derivatives, respectively. Once again, we use such simply defined mol
functions only for the purpose of exploring the featured [@f]. In practice, accuracy can
often be gained significantly by introducing the intensity parameter in the monitor functi
to control the mesh concentration. For exam@e can be modified as

Gi=1+alH]|.
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FIG. 3. Results obtained with monitor functiéy, = /det(l + [H|[)I. The leftand right columns correspond
to Case A«(q, 8) = (2,0.1) and Case B(q, 8) = (2, 0.5), respectively.

The largerx is, the more intensive the mesh adaptation can be. A proper choicevidif
often lead to better accuracy. See [2, 14] for the automatic choice of this parameter in
and two dimensions.

Itis noted that the monitor function can be choseGas | + HTHorG = | ++/HTH
according to the gradient error estimate of linear interpolation given in Section 2. Wh
they do lead to slightly better results, these functions do not offer any new feature in
resulting meshes other than those giver@y For this reason and for saving space, we dc
not present the results obtained with these monitor functions.
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FIG.4. (Continued from Fig. 3) Results obtained with monitor funct&n= /det(l + [H]|)| for the uniform
mesh case.
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FIG.5. Results obtained with monitor functidd; = | + Vu(Vu)T. The left and right columns correspond
to Case A(q, 8) = (2,0.1) and Case B(q, 6) = (2, 0.5), respectively.
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FIG. 6. (Continued from Fig. 5) Results obtained with monitor funct®n= | + Vu(vu)'. The left and

right columns correspond to Cased= 1 (harmonic mapping) and the uniform mesh case, respectively.

The numerical results will be given for the functions

tr(A)"/2
n"/2,/det(A)’

whereG equals one of the functions;, G,, G3, andG4, which measures the deviation
from conformity and

D(X) = A=J1G7 T, (24)

’

EP(X) = J—*C/g (25)

wherec = (1/|Q¢|) /, /0 dx, that measures the deviation from equidistribution. Whe!
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FIG. 7. Results obtained with monitor functio®, = /det(l + Vu(Vu)T)I. The left and right columns
correspond to Case Aq, ) = (2, 0.1) and Case B(q, 9) = (2, 0.5), respectively.

FIG. 8. (Continued from Fig. 7) Results obtained with monitor funct@n= /det(l + Vu(Vu)7)I for the
uniform mesh case.
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TABLE |
The Maximum Error of Linear Interpolation on the Obtained
Converged Meshes

Monitor function Case q 0 llell e
G, A 2 0.1 9.12e-3
B 2 0.5 2.73e-2
C 1 4.20e-2
G, A 2 0.1 8.90e-3
B 2 0.5 9.71e-3
G3 A 2 0.1 3.11e-2
B 2 0.5 1.43e-1
C 1 1.71e-1
G, A 2 0.1 2.19e-2
B 2 0.5 2.60e-2
Uniform mesh 8.83e-1

D(x) = 1, the mapping becomes conformal while the equidistribution relation (12) hol
if EP(x) = 1.

These two functions and the converged mesh obtained with monitor fun@igrs,,
G3, andG, are plotted in Figs. 1-8 for Case 43, ) = (2, 0.1), Case B(q, 9) = (2, 0.5),
and Case q = 1 (the harmonic mapping case). For comparison, we alsdj(ot y) and
E P(x, y) obtained on a uniform mesh. The maximum linear interpolation error is listed
Table I. From these results, the following observations can be made:

(a) Case C has the smallest deviation from conformity, followed by Cases B and A.

(b) On the other hand, Case A has the smallest deviation from equidistribution,
highest degree of mesh concentration, and the smallest interpolation error, followed
Case B and Case C. In particular, for Case C there are not enough mesh points concen
in the central area and this leads to low-accuracy resolution, as shown in Figs. 2 an
These results are compatible with the construction, i.e., the sngglkle more closely
the equidistribution relation (12) is satisfied and the higher degree of adaptation resi

TABLE Il
The Maximum Error of Linear Interpolation on the Obtained
Converged Meshes for the Second Example

Monitor function Case q 0 €]l s
G, A 2 0.1 1.23e-2
B 2 0.5 1.75e-2
C 1 5.76e-2
G, A 2 0.1 1.64e-2
B 2 0.5 1.94e-2
G; A 2 0.1 1.47e-2
B 2 0.5 8.50e-2
C 1 1.19e-1
G, A 2 0.1 2.45e-2
B 2 0.5 1.93e-2

Uniform mesh 1.95
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FIG.9. Adaptive meshes obtained for the second example with monitor fund&tipaadG;. The left column
corresponds t&; and the right one is foB3. The first, second, and third rows correspond to Case A, Case B, an
Case C (harmonic mapping case), respectively.

Moreover, they indicate that a mesh adaptation functional should have a certain degre
equidistribution in order to produce reasonably accurate results.

(c) Asmentionedinthe last paragraph of Section 4, the isotropy functiggthlat results
in a harmonic mapping in two dimensions produces no mesh adaptation for Winslow'’s ty
monitor functionsG, andGg4. In contrast,| [£] with g > 1 works well for these monitor
functions, as may be seen in Figs. 3and 7.
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FIG. 10. (Continued from Fig. 9) Adaptive meshes obtained for the second example with monitor functic
G, andG,. The left column corresponds @, and the right one is foG,. The first and second rows correspond
to Case A and Case B, respectively.

(d) As expected, the monitor functions based on the Hessian matrix lead to better
curacy than the arc-length monitor functions. Aléa; and G4 produce more accurate
results for this example but worse results in the next one (see Table 11 Ghamd Gs,
respectively.

(e) Finally, all the adaptive meshes give significantly better results than a uniform me
does with the same number of nodes.

We also show the adaptive meshes in Figs. 9 and 10 and the maximum error in Tab
for the second example

u(x, y) = tanh(30((x — 0.5)2 + (y — 0.5)2 — 1/16)).

The obtained results confirm the above observations.

7. CONCLUSIONS AND COMMENTS

Several criteria for mesh adaptation have been developed based on an error functionw
definition is motivated by function variation and error estimates for linear interpolation.
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particular, the isotropy and uniformity criteria, (6) and (7), are shown to correspond
the practical regularity and uniformity properties of a computational mesh, respectively
is also shown that isotropy is equivalent to conformity while uniformity is equivalent t
equidistribution from the mesh adaptation point of view.

Functionalsliso and l¢p that respectively accommodate the isotropy and equidistribt
tion requirements are constructed using discrete and continuous inequalities. Functi
I [£] that compromises these conditions is formulated by naturally combiningnd lep.
Two parameterg > 1 andd € (0, 0.5] are involved in the formulation. Whep= 1, | [£]
becomediso, Which leads exactly to the widely used functional for harmonic mapping
in two dimensions. Whef = 0.5, | [£] gives rise to a functional that is known to have
a unigue minimizer. The equidistribution functiorig} can be obtained by taking= 0.
Unlike many existing mesh adaptation functionals, the geometric meaning of minimizati
of the developed functiondl£] is clear by construction. That is, the smaller the value of
0, the more closely the equidistribution is satisfied and the higher degree of mesh ac
tation is achieved. On the other hand, the big@es or the closer to 1 the value df,
the more regular or conformal and the less adaptive the mesh. These results also pre
a better understanding of the increasingly popular method of harmonic mapping in t
dimensions.

The numerical results have been presented to demonstrate the featui&$. ¢far-
ticularly, they indicate that a mesh adaptation functional should have a certain degre:
equidistribution in order to produce reasonably accurate solutions. Our limited experie
shows that the choices for the valuesgj@inde are not crucial. Generally, (and as done in our
numerical example), the choice gf= 2 and 01 < # < 0.5 seems to work welkk cannot
be taken too close to zero, otherwisig] will become nonconvex, and its minimization
problem will be difficult to solve.

The presented analysis and results can be used in two ways to define a proper r
itor function with the developed functional for practical problems. The simple way |
through the generalized equidistribution principle (12). With it, one can choose a mc
itor function of Winslow’s type with the weight function being large in the area wher
higher mesh concentration is desired. An example is to take the weight function as
estimate of the error density function. The other is to use the error function (2). For ¢
ample, when considering the function variation, as shown in Section 2, we can cho
G=Gs=1+Vvuvu' or G = G, = /det(G3) if a monitor function of Winslow's type
is preferred. In the meantime, when the error of linear interpolation is conce@ed,
Gi=1+|H|orG = G, = ,/det(G) will be the choice. It is worth mentioning that with
the variational approach developed in this article, it is also possible to define the m
itor function based directly on error estimates. A study related to this topic is curren
underway.

Finally, we remark that the isotropy functionbl, (11) leads to harmonic mappings
in two dimensions but different ones in three dimensions. This may not be a drawb:
because it is unclear whether or not three dimensional harmonic mappings are invert
even if the target space (i.e., the computational domain in mesh adaptation) is Euclid
and has a convex boundary; e.g., see [20]. On the other hand, neither is it clear if a r
imizer exists for the developed functionHl¢]. However, if a minimizer does exist for
a smaller value ob, the analysis and numerical results given in the preceding sectio
suggest that the resultant coordinate transformation satisfy an approximate equidistribt
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relation

Ci<JdJ/g=<C

with some positive constan® andC,. As an immediate consequence, the JacoBiauil
not vanish and the coordinate transformation is at least locally nonsingular.
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