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We present a new approach for developing more robust and error-oriented mesh
adaptation methods. Specifically, assuming that a regular (in cell shape) and uniform
(in cell size) computational mesh is used (as is commonly done in computation), we
develop a criterion for mesh adaptation based on an error function whose definition
is motivated by the analysis of function variation and local error behavior for linear
interpolation. The criterion is then decomposed into two aspects, the isotropy (or
conformity) and uniformity (or equidistribution) requirements, each of which can be
easier to deal with. The functionals that satisfy these conditions approximately are
constructed using discrete and continuous inequalities. A new functional is finally
formulated by combining the functionals corresponding to the isotropy and unifor-
mity requirements. The features of the functional are analyzed and demonstrated by
numerical results. In particular, unlike the existing mesh adaptation functionals, the
new functional has clear geometric meanings of minimization. A mesh that has the
desired properties of isotropy and equidistribution can be obtained by properly choos-
ing the values of two parameters. The analysis presented in this article also provides
a better understanding of the increasingly popular method of harmonic mapping in
two dimensions. c© 2001 Elsevier Science
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1. INTRODUCTION

In this article we are concerned with variational methods for generating adaptive meshes
for use in the numerical solution of partial differential equations. A variational method
utilizes a functional to determine the coordinate transformation needed for mesh generation.
Such a functional is often formulated to measure difficulties in the numerical approximation
of the physical solution and typically involves a so-called monitor function that is prescribed
by the user to control the mesh adaptation. An important feature of the formulation is the
well posedness of the functional, that is, the existence and uniqueness of the minimizer, and
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sometimes the maximum principle, should be assured. Generally, the necessary property
of the nonsingularity of the coordinate transformation is always the most difficult thing to
guarantee theoretically, although it does not seem to be a problem numerically for those
systems having a convex computational domain and obeying the maximum principle.

Due to the well-posedness consideration, people usually do not directly use standard
error estimates in the development of variational methods since they lead to nonconvex
functionals in two and higher dimensions. Indeed, most of the existing variational methods
have been developed based on other considerations such as geometric ones; e.g., see [3,
4, 9, 12, 16, 18, 19, 23, 25] and the books [10, 17, 21, 24] and references therein. For
example, Brackbill and Saltzman [4] developed a very popular method by combining mesh
concentration, smoothness, and orthogonality. Dvinsky [9] used the energy of harmonic
mappings as his mesh adaptation functional. Knupp [16, 18] and Knupp and Robidoux [19]
developed functionals based on the idea of conditioning the Jacobian matrix of the coordinate
transformation. Caoet al. [5] studied qualitatively the effect of the monitor function on the
behavior of the mesh for a class of functionals. However, the lack of direct connections
with error estimates in the existing methods makes it tricky to choose a proper monitor
function for some practical problems. Most of the existing methods certainly need to be
better understood, and new methods that are more robust and more error-estimate–oriented
are yet to be developed.

The objective of this article is to present a new approach of developing more robust
and error-oriented mesh adaptation functionals. Specifically, assuming that a regular (in
cell shape) and uniform (in cell size) computational mesh is used (as is commonly done
in computation), we develop a criterion for mesh adaptation based on an error function
whose definition is motivated by the analysis of function variation and local error behavior
for linear interpolation. The criterion is further decomposed into two aspects, the isotropy
(or conformity) and uniformity (or equidistribution) requirements, each of which can be
easier to deal with. Functionals that satisfy these conditions approximately are then con-
structed using discrete and continuous inequalities. Finally, a new functional is formulated
by combining the functionals corresponding to the isotropy and uniformity requirements.
The features of the functional are analyzed and demonstrated by numerical results.

An outline of the article is as follows. In Section 2, several criteria for mesh adaptation are
proposed and the mathematical implications of its isotropy and uniformity properties are
presented. Sections 3 and 4 are devoted to the derivations of the functionals according to the
isotropy and uniformity requirements, respectively. A functional that naturally combines
the functionals developed in Sections 3 and 4 is derived in Section 5. Also in this section, the
features of the newly developed functional are analyzed and the Euler–Lagrange equation
is given. Illustrative numerical results are presented in Section 6. Finally, Section 7 contains
conclusions and comments.

Throughout this article, the terms regularity, isotropy, and conformity are used for de-
scribing the shape of mesh cells, while the terms uniformity and equidistribution are used
for measuring the change in cell size or volume. Thus, a uniform mesh is not necessarily
regular. Only a mesh having equilateral cells can be regular.

2. CRITERIA FOR MESH ADAPTATION

In this section several criteria that are used for constructing mesh adaptation functionals
are developed based on an error function whose definition is motivated by the analysis of
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function variation and error estimates for linear interpolation. This error function is different
from error estimates in the sense that it is used to describe the local behavior of the error
rather than to provide an estimate of its magnitude.

LetÄ andÄc be the (simply-connected) physical and computational domains in<n, n =
1, 2, or 3, respectively, and denote the coordinates for them byx andξ. For a given function
u = u(x) (or its approximation), we seek a coordinate transformationx = x(ξ) :Äc→ Ä

(or its inverse mappingξ = ξ(x) :Ä→ Äc) such that̂u(ξ) ≡ u(x(ξ)) is easier to approx-
imate inÄc. To this end, we consider the linear element or the function variation over a
differential segmentdξ in Äc

ds2 ≡ (dû)2+ dxT dx = dξT JT [ I +∇u∇uT ] J dξ, (1)

whereJ = (∂x)/(∂ξ) is the Jacobian matrix of the coordinate transformation. Ideally,x =
x(ξ) should be chosen such thatJT [ I +∇u∇uT ] J = cI , where I is the identity matrix
andc is a constant. In this way,̂u has constant variation and can be well resolved on a
computational mesh that is commonly chosen to be regular and uniform.

The other motivation for easy numerical approximation comes from interpolation error
estimates. Let51u be the linear interpolant ofu at the vertices of an imaging mesh cell
(say a triangle in two dimensions) and denote the error byE0(x) = 51u− u. E0 can then
be expressed as a quadratic function locally, and its level surfaces form a family of ellipses
with a common centerxc, provided that the Hessian matrix ofu, denoted byH , is positive
definite. The geometric illustration of interpolation at the vertices of the mesh cell is that
the circum-surface of the cell from this family of ellipses is the level surface of value zero.
It is shown by D’Azevedo [6] that forx close toxc, E0 can be written as

E0(x) ≈ E0(xc)− 1

2
dxT H dx,

wheredx = x− xc, andH is calculated atx = xc. Further, D’Azevedo and Simpson [7]
show that the gradient of the linear interpolation error is given by

EG(x) ≡ ‖∇(u−51u)‖l 2 ≈
√

dxT H T H dx.

Writing dx = Jdξ with dξ = ξ − ξc, we have

E0(x) ≈ E0(xc)− 1

2
dξT JT H J dξ,

EG(x) ≈
√

dξT JT H T H J dξ.

Once again, to resolvêu by linear interpolation on a regular and uniform mesh inÄc, we
should choose the coordinate transformation such that eitherJT HJ = cI orJT H T HJ = cI
for some constantc.

From the above formulae for the solution variation and linear interpolation error estimates,
it is reasonable to assume that some error estimates can be characterized by a quadratic
function. For this reason, we define a general error function as

E(x) =
√

dξTJT GJ dξ, (2)
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whereξc is an arbitrary point inÄc, dξ = ξ − ξc, andG = G(x) is ann by n symmetric
and positive definite matrix that is prescribed by the user and referred to as the monitor
function. Without causing confusion, we assume that, in (2) and hereafter, coordinatesx
andξ are related by the coordinate transformationx = x(ξ), andJT GJ is calculated atξc.
Our goal is then to findx= x(ξ) such that

JT GJ = 1

c
I or J−1G−1J−T = cI (3)

for some positive constantc.
Unfortunately, (3) is unachievable in general. To see this, lettingG = MT M , we can

rewrite (3) as

(J−1M−1)(J−1M−1)T = cI.

It is easy to verify that

J−1M−1 = √cQ (4)

for arbitrary orthogonal matrixQ. For the trivial caseG = I (no adaptation), (4) implies that
the coordinate transformation is orthogonal irrespective of the physical and computational
domains. Obviously, this is impossible. Hence, (3) can be satisfied only approximately.

To develop functionals that accommodate this criterion, we now replace it with two equiv-
alent conditions that are easier to deal with. In fact, (3) is equivalent to requiring that the
eigenvalues ofA ≡ J−1G−1J−T are equal and the determinant is constant. Geometrically,
these two conditions force the error functionE(x) to have an isotropic and uniform distri-
bution. To explain this more clearly, expressingA in its eigen-decompositionA = U DU T ,
whereU is an orthogonal matrix andD = diag(λ1, . . . , λn), we obtain the level surface as

(ξ − ξc)
TU D−1U T (ξ − ξc) = e2 or

∑
i

(
ξ̃ i − ξ i

c√
λi

)2

= e2, (5)

whereξ̃ − ξc = U T (ξ − ξc) ande is a given error level. Then, the isotropy condition means
that the ellipse (5) should be close to a sphere while the uniformity requirement implies
that the volume of the corresponding ellipsoid should be constant with respect to location
in Äc. Mathematically, we have

Isotropy Criterion: λ1 = · · · = λn; (6)

Uniformity Criterion:

√∏
i

λi = constant. (7)

These are the criteria that will be used for constructing mesh adaptation functionals in the
rest of the paper. Note that isotropy is a local property since it describes only the local
behavior ofE(x), whereas uniformity is a global one because it restricts the change of the
function from place to place.

It is remarked that Knupp and Robidoux [19] obtained an equation similar to (4) as
a general conclusion rather than a criterion and used it to analyze a number of existing
functionals, including the one for harmonic mappings.
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3. ISOTROPIC ERROR DISTRIBUTION AND CONFORMITY

We now develop mesh adaptation functionals that satisfy the isotropy criterion approx-
imately. Our basic tool is the well-known arithmetic-mean geometric-mean inequality. Its
application to the eigenvalues ofA gives rise to

(∏
i

λi

) 1
n

≤ 1

n

∑
i

λi , (8)

with equality if and only ifλ1 = · · · = λn. The coordinate transformation that approxi-
mately satisfies (6) can thus be obtained by minimizing the difference

1

n

∑
i

λi −
(∏

i

λi

) 1
n

or its variants.
Noticing that ∑

i

λi = tr(A) =
∑

i

(∇ξ i )T G−1∇ξ i ,

∏
i

λi = det(A) = 1

J2g
,

whereJ andg are the determinants ofJ andG, respectively, we rewrite (8) as

nndet(A) ≤ (tr(A))n (9)

or

nn/2

J
√

g
≤
(∑

i

(∇ξ i )T G−1∇ξ i

)n/2

. (10)

Multiplication of (10) by
√

g and integration overÄ gives rise to

nn/2
∫
Äc

dξ ≤
∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)n/2

dx.

Hence, the mesh adaptation functionalaccording to the isotropy criterionis given by

I iso[ξ] = 1

2

∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)n/2

dx. (11)

Interestingly, functional (11) can also be derived from the concept of conformal norm
that has been used in the context of the differential geometry to define a whole class of
nonorthogonality measures for linear mappings; e.g., see [22]. Let<n,n be the space of



908 WEIZHANG HUANG

n× n real matrices. A normN is said to be conformal if there exists a constantκN > 0
such that

κNdet(B) ≤ [N(B)]n

for any B ∈ <n,n with det(B) > 0, with equality if and only ifB is a general orthogonal
matrix. Here, a general orthogonal matrix is defined as the product of a scalar number times
an orthogonal matrix. Examples of conformal norms include

Np(B) =
(

n∑
i=1

(
n∑

j=1

b2
i j

)p/2)1/p

N∗p(B) =
(

n∑
j=1

(
n∑

i=1

b2
i j

)p/2)1/p

for some integerp ≥ 1. Whenp = 2, κN = nn/2 and bothNp(B) andN∗p(B) are equal to
‖B‖F , the Frobenius norm ofB.

The definition of the conformal norm implies that the mapping that is closest to confor-
mal mappings can be obtained by minimizing the difference([N(B)]n − κNdet(B)) or its
variants. Using the Frobenius norm, we obtain

nn/2det(B) ≤ ‖B‖nF .

By letting G = MT M and takingB = J−1M−1, inequality (9) follows from the relations
A = B BT , ‖B‖2F = tr(A), and(det(B))2 = det(A). Thus, the isotropy and conformity cri-
teria lead to the same functional. In this sense, conformity and isotropy are equivalent.

We note thatI iso is constant in the casen = 1. This reflects the fact that in one dimension
there is no need to impose the isotropy condition since there is only one eigen-direction.
In two dimensions,I iso is the energy functional for harmonic mappings. By construction,
the harmonic mapping is now the closest one to conformal mappings under the given
boundary correspondence. Interestingly, whenn ≥ 3, (11) is different from the currently
used functionals, especially the energy of harmonic mappings and the functional studied in
[5] that includes Winslow’s functional as a special example.

Recall that isotropy is a local property which regulates the local behavior of the coordinate
transformation. This local regulation seems to have two global impacts. First, the mapping
stretch can vary from place to place in the computational domain. It means that a uniform
computational mesh can sometimes fail to resolve a functionû = u(x(ξ)). The other impact
is that the satisfaction of the isotropy requirement everywhere inÄc can lead to a very rigid
mapping. Indeed, it is well known that conformal mappings are rigid in the sense that very
few degrees of freedom are needed to specify them. Thus, a complete specification of the
boundary correspondence, as usually done in variational mesh generation and adaptation,
can adversely affect and compete with the satisfaction of the isotropy criterion. Unfortu-
nately, in this competition, it appears that the isotropy criterion or mesh adaptation is always
the loser since in most cases the satisfaction of boundary correspondence is mandatory. As
a consequence, mesh adaptation is sacrificed, meaning that not enough mesh points are
concentrated or the concentration is misplaced; e.g., see Fig. 4.2 of [5] and Fig. 2 in this
article.
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Another disadvantage of functionalI iso is that it cannot handle Winslow’s type of monitor
functionG = w(x)I , which is already isotropic, in the sense that there is no mesh adaptation
taking place with this function.

4. UNIFORM ERROR DISTRIBUTION AND EQUIDISTRIBUTION

The uniformity criterion (7) requires that the volume of the ellipsoid contained by the
error level ellipse (5), or

√∏
i λi =

√
det(A) = 1/(J

√
g), be constant. In other words, it

is equivalent to

J
√

g = constant, (12)

which, in fact, is a generalization of the (one-dimensional) equidistribution principle [8].
We need the following lemma for constructing the functional based on the equidistribution

principle (12). The interested reader is referred to Hardyet al. [13] for its proof.

LEMMA 4.1. Given a weight functionw(x) with
∫
Ä
w dx = 1, define

Mr ( f ) =
(∫

Ä

w| f |r dx

)1/r

for arbitrary function f and real number r, with the limits that M0( f )= exp(
∫
Ä
w log

| f | dx) (geometric mean), M+∞ = max| f |, and M−∞ = min | f |. Then

Mr ( f ) < Ms( f ) (13)

for −∞ ≤ r < s ≤ +∞ unless(a) Mr ( f ) = Ms( f ) = +∞, which can happen only if
r ≥ 0 or (b) Mr ( f ) = Ms( f ) = 0, which can happen only if s≤ 0 or (c) f ≡ constant.

To use this lemma, we takew = √g, f = 1/(J
√

g), r = 1, ands= q for any real
numberq> 1. Then, the lemma gives rise to

∫
Ä

√
g

J
√

g
dx =

∫
Äc

dξ ≤
[∫

Ä

√
g

(J
√

g)q
dx

]1/q

, (14)

with equality if and only if (12) holds. As in the last section, we conclude that given
a boundary correspondence betweenÄ andÄc, the coordinate transformation that most
closely satisfies (12) or the uniformity criterion can be obtained by minimizing the difference
between both sides of (14). The mesh adaptation functionalaccording to the uniformity or
equidistribution criterionis thus obtained as

Iep[ξ] =
∫
Ä

√
g

(J
√

g)q
dx. (15)

Takingq = 2, the functional becomes a least squares functional

Iep[ξ] =
∫
Ä

√
g

(J
√

g)2
dx =

∫
Ä

1√
g

[
det

(
∂ξ

∂x

)]2

dx.
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There exist a number of mesh generation and/or adaptation functionals related to the
JacobianJ. For example, Brackbill and Saltzman [4] minimize the functional∫

Ä

w(x)J dx

with intent that cells are small in the region where the given weight functionw is large.
Steinberg and Roache [23] show that the constrained discrete optimization problem

min
∑

i

x2
i

2wi
, subject to

∑
xi = 1

has the equidistributing solutionx1/w1 = · · · = xn/wn. Based on the understanding gained
from this example and the analysis of a one-dimensional continuous functional, they propose
to use the functional ∫

Äc

J2 dξ

subject to the global implicit constraint∫
Äc

J dξ =
∫
Ä

dx,

intending to keep the cell volumes constant. These ideas of linking functionals to equidistri-
bution and using global implicit constraints are carried on by Knupp and Robidoux [19]. In
his recent work [1], Baines shows, using a discrete identity, that least squares minimization
of the residual of the divergence of a vector field is equivalent to that of a least squares
measure of equidistribution of this residual.

Equation (15) is different from the currently used functionals. Also, our method of using
Lemma 4.1 to construct functionals associated with equidistribution is more straightforward
and convincing. Further, the method can be used in any number of dimensions.

Unfortunately, functionalIep is not coercive in two and higher dimensions. The existence
and uniqueness of its minimizer are not guaranteed [11]. This makesIep hard to use in
practice. In the next section, we will discuss a possible combination of functionals (11) and
(15) to overcome this difficulty.

5. MESH ADAPTATION EQUATION

In the last two sections we have seen that neither functional (11) nor (15) can alone lead
to a robust adaptive mesh method. On the other hand, this is not surprising since either of
them represents only one side of criterion (3). Thus, it is necessary and natural to combine
them together.

From (10) we have

nnq/2
∫
Ä

√
g

(J
√

g)q
dx ≤

∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)nq/2

dx. (16)
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For a given valueθ ∈ [0, 1], a balance of the differences between both sides of (16) and of
(14) is

θ

[∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)nq/2

dx− nnq/2
∫
Ä

√
g

(J
√

g)q
dx

]

+ (1− θ)nnq/2

[∫
Ä

√
g

(J
√

g)q
dx−

(∫
Äc

dξ

)q]
.

The first square bracket represents the isotropy requirement and the second is the uniformity
or equidistribution requirement. Thus, by minimizing functional

I [ξ] = θ
∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)nq/2

dx+ (1− 2θ)nnq/2
∫
Ä

√
g

(J
√

g)q
dx, (17)

whereθ ∈ [0, 1], we expect to find a coordinate transformation that accommodates the two
requirements. Note that the two integrals on the right-hand side have the same dimension.
In one dimension,I [ξ] has the form

I [ξ ] = (1− θ)
∫
Ä

√
g

(
1√
g

∂ξ

∂x

)q

dx.

Regarding well posedness, we first note that fornq/2≥ 1, the first part ofI [ξ] is convex,
and the existence, uniqueness, and the maximum principle for its minimizer are guaranteed;
e.g., see [11, 22]. It is unknown to us if this result can also apply to the whole functional.
But, one can easily see thatI [ξ] is coercive ifθ ∈ (0, 1/2]. Moreover, whenθ = 1/2, only
the first part of the functional remains, viz.,I [ξ] becomes

Iq[ξ] = 1

2

∫
Ä

√
g

(∑
i

(∇ξ i )T G−1∇ξ i

)nq/2

dx. (18)

Thus, it is reasonable to conjecture that the minimizer ofI [ξ] exists forθ ∈ (0, 1/2]. For
this reason, we will consider values ofθ only within the range (0, 1/2]. It is also interesting
to mention that functionalI iso can be obtained from (17) by simply takingq = 1 irrespective
of θ .

We now derive the Euler–Lagrange equation for functionalI [ξ] for q ≥ 1. For simplicity,
(17) is rewritten as

I [ξ] = θ
∫
Ä

(∑
i

(∇ξ i )T Ḡ−1∇ξ i

)γ
dx+ (1− 2θ)nγ

∫
Ä

√
g

(J
√

g)q
dx, (19)

where

Ḡ = 1

g1/(2γ )
G, γ = nq

2
.

Denoteβ =∑i (∇ξ i )T Ḡ−1∇ξ i . For the purpose of well posedness, it is assumed thatn ≥ 1
andq ≥ 1 are chosen such thatγ ≥ 1. With this notation, the Euler–Lagrange equation can
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be written as

∇ ·
[
θγβγ−1Ḡ−1∇ξ i + (1− 2θ)qnγ

√
g

2

(
1

J
√

g

)q
∂x
∂ξ i

]
= 0, i = 1, . . . ,n. (20)

Practically, it is more convenient to computex = x(ξ) instead of its inverseξ = ξ(x).
Interchanging the roles of the dependent and independent variables, we have the conservative
form

∑
j

∂

∂ξ j
J(ai )T

[
θγβγ−1Ḡ−1∇ξ i + (1− 2θ)qnγ

√
g

2

(
1

J
√

g

)q
∂x
∂ξ i

]
= 0, i = 1, . . . ,n

(21)

and the nonconservative form

θ

[∑
i j

((ai )T Ḡ−1a j )
∂2x

∂ξ i ∂ξ j
−
∑

i

(
(ai )T

∑
j

∂(Ḡ−1)

∂ξ j
a j

)
∂x
∂ξ i

]

+ θ(γ − 1)

β

[
2
∑

i j

(
(Ḡ−1ai )(Ḡ−1a j )T

∑
k

ak(ak)T

)
∂2x

∂ξ i ∂ξ j

−
∑

i

(∑
j

(
(ai )T Ḡ−1a j

∑
k

(ak)T
∂(Ḡ−1)

∂ξ j
ak

))
∂x
∂ξ i

]
+ (1− 2θ)q(q− 1)nγ

√
g

γβγ−1(J
√

g)q

×
[∑

i j

(ai (a j )T )
∂2x

∂ξ i ∂ξ j
+
∑

i

(
1√
g

∂
√

g

∂ξ i

)
∂x
∂ξ i

]
= 0, (22)

whereai ≡ (∂x)/(∂ξ i ) andai ≡ ∇ξ i are the covariant and contravariant base vectors that
are related by

ai = 1

J
a j × ak with (i, j, k) cyclic.

6. NUMERICAL EXPERIMENTS

To demonstrate various features of the developed mesh adaptation functional, in this
section we present some two-dimensional numerical results obtained mainly for function

u(x, y) = e−100((x−0.5)2+(y−0.5)2) (23)

defined in the unit square.Äc is chosen to be the unit square. Since our purpose here is to
explore the features of functional (17), we use a uniform boundary correspondence between
Ä andÄc and no smoothing of the monitor function in our computations. But, we would
like to emphasize that in practice, an adaptive boundary correspondence and a few sweeps
of a low-pass filter for smoothing the monitor function are often necessary, and sometimes
can be crucial, for accuracy and efficiency of variational methods; e.g., see [14].

The mesh equation (22) is discretized with central finite differences and solved using
the moving mesh PDE approach [15]. With this approach, a derivative(∂x)/(∂t) with
respect to pseudo-timet is added to the mesh equation (22) and the resultant parabolic
system is integrated using a modified backward Euler scheme with which the coefficients
of terms (∂x)/(∂ξ i ) and (∂2x)/(∂ξ i ∂ξ j ) are calculated at the previous time level. The



VARIATIONAL MESH ADAPTATION 913

FIG. 1. Results obtained with monitor functionG1 = I + |H |. The left and right columns correspond to
Case A:(q, θ) = (2, 0.1) and Case B:(q, θ) = (2, 0.5), respectively.

nonlinear algebraic system is solved using a preconditioned conjugate gradient method.
The converged mesh is obtained when the root-mean-square norm of the residual is less
than 10−6. All computations start with a uniform mesh of size 41× 41.

In the computations, the following four monitor functions are used,

G1 = I + |H |,
G2 =

√
det(G1)I ,

G3 = I +∇u(∇u)T ,

G4 =
√

det(G3)I ,
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FIG. 2. (Continued from Fig. 1) Results obtained with monitor functionG1 = I + |H |. The left and right
columns correspond to Case C:q = 1 (harmonic mapping) and the uniform mesh case, respectively.

where |H | = Vdiag(|µ1|, . . . , |µn|)VT , assuming that the eigen-decomposition of the
Hessian matrix ofu, H , is given byVdiag(µ1, . . . , µn)VT . The definition ofG1 is based on
the error estimateE0 of linear interpolation.G3 is the commonly used arc-length monitor
function.G2 andG4 are Winslow’s type monitor functions associated with the first- and
second-order derivatives, respectively. Once again, we use such simply defined monitor
functions only for the purpose of exploring the features ofI [ξ]. In practice, accuracy can
often be gained significantly by introducing the intensity parameter in the monitor function
to control the mesh concentration. For example,G1 can be modified as

G1 = I + α|H |.
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FIG. 3. Results obtained with monitor functionG2 =
√

det(I + |H |)I . The left and right columns correspond
to Case A:(q, θ) = (2, 0.1) and Case B:(q, θ) = (2, 0.5), respectively.

The largerα is, the more intensive the mesh adaptation can be. A proper choice ofα will
often lead to better accuracy. See [2, 14] for the automatic choice of this parameter in one
and two dimensions.

It is noted that the monitor function can be chosen asG = I + H T H orG = I +
√

H T H
according to the gradient error estimate of linear interpolation given in Section 2. While
they do lead to slightly better results, these functions do not offer any new feature in the
resulting meshes other than those given byG1. For this reason and for saving space, we do
not present the results obtained with these monitor functions.
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FIG. 4. (Continued from Fig. 3) Results obtained with monitor functionG2 =
√

det(I + |H |)I for the uniform
mesh case.

FIG. 5. Results obtained with monitor functionG3 = I +∇u(∇u)T . The left and right columns correspond
to Case A:(q, θ) = (2, 0.1) and Case B:(q, θ) = (2, 0.5), respectively.
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FIG. 6. (Continued from Fig. 5) Results obtained with monitor functionG3 = I +∇u(∇u)T . The left and
right columns correspond to Case C:q = 1 (harmonic mapping) and the uniform mesh case, respectively.

The numerical results will be given for the functions

D(x) ≡ tr(A)n/2

nn/2
√

det(A)
, A = J−1G−1J−T , (24)

whereG equals one of the functionsG1, G2, G3, andG4, which measures the deviation
from conformity and

E P(x) = J
√

g

c
, (25)

wherec = (1/|Äc|)
∫
Ä

√
g dx, that measures the deviation from equidistribution. When
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FIG. 7. Results obtained with monitor functionG4 =
√

det(I +∇u(∇u)T )I . The left and right columns
correspond to Case A:(q, θ) = (2, 0.1) and Case B:(q, θ) = (2, 0.5), respectively.

FIG. 8. (Continued from Fig. 7) Results obtained with monitor functionG4 =
√

det(I +∇u(∇u)T )I for the
uniform mesh case.
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TABLE I

The Maximum Error of Linear Interpolation on the Obtained

Converged Meshes

Monitor function Case q θ ‖e‖∞
G1 A 2 0.1 9.12e-3

B 2 0.5 2.73e-2
C 1 4.20e-2

G2 A 2 0.1 8.90e-3
B 2 0.5 9.71e-3

G3 A 2 0.1 3.11e-2
B 2 0.5 1.43e-1
C 1 1.71e-1

G4 A 2 0.1 2.19e-2
B 2 0.5 2.60e-2

Uniform mesh 8.83e-1

D(x) ≡ 1, the mapping becomes conformal while the equidistribution relation (12) holds
if E P(x) ≡ 1.

These two functions and the converged mesh obtained with monitor functionsG1, G2,
G3, andG4 are plotted in Figs. 1–8 for Case A:(q, θ) = (2, 0.1), Case B:(q, θ) = (2, 0.5),
and Case C:q = 1 (the harmonic mapping case). For comparison, we also plotD(x, y) and
E P(x, y) obtained on a uniform mesh. The maximum linear interpolation error is listed in
Table I. From these results, the following observations can be made:

(a) Case C has the smallest deviation from conformity, followed by Cases B and A.
(b) On the other hand, Case A has the smallest deviation from equidistribution, the

highest degree of mesh concentration, and the smallest interpolation error, followed by
Case B and Case C. In particular, for Case C there are not enough mesh points concentrated
in the central area and this leads to low-accuracy resolution, as shown in Figs. 2 and 6.
These results are compatible with the construction, i.e., the smallerθ , the more closely
the equidistribution relation (12) is satisfied and the higher degree of adaptation results.

TABLE II

The Maximum Error of Linear Interpolation on the Obtained

Converged Meshes for the Second Example

Monitor function Case q θ ‖e‖∞
G1 A 2 0.1 1.23e-2

B 2 0.5 1.75e-2
C 1 5.76e-2

G2 A 2 0.1 1.64e-2
B 2 0.5 1.94e-2

G3 A 2 0.1 1.47e-2
B 2 0.5 8.50e-2
C 1 1.19e-1

G4 A 2 0.1 2.45e-2
B 2 0.5 1.93e-2

Uniform mesh 1.95
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FIG. 9. Adaptive meshes obtained for the second example with monitor functionsG1 andG3. The left column
corresponds toG1 and the right one is forG3. The first, second, and third rows correspond to Case A, Case B, and
Case C (harmonic mapping case), respectively.

Moreover, they indicate that a mesh adaptation functional should have a certain degree of
equidistribution in order to produce reasonably accurate results.

(c) As mentioned in the last paragraph of Section 4, the isotropy functionalI iso that results
in a harmonic mapping in two dimensions produces no mesh adaptation for Winslow’s type
monitor functionsG2 andG4. In contrast,I [ξ] with q > 1 works well for these monitor
functions, as may be seen in Figs. 3 and 7.
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FIG. 10. (Continued from Fig. 9) Adaptive meshes obtained for the second example with monitor functions
G2 andG4. The left column corresponds toG2 and the right one is forG4. The first and second rows correspond
to Case A and Case B, respectively.

(d) As expected, the monitor functions based on the Hessian matrix lead to better ac-
curacy than the arc-length monitor functions. Also,G2 and G4 produce more accurate
results for this example but worse results in the next one (see Table II) thanG1 andG3,
respectively.

(e) Finally, all the adaptive meshes give significantly better results than a uniform mesh
does with the same number of nodes.

We also show the adaptive meshes in Figs. 9 and 10 and the maximum error in Table II
for the second example

u(x, y) = tanh(30((x − 0.5)2+ (y− 0.5)2− 1/16)).

The obtained results confirm the above observations.

7. CONCLUSIONS AND COMMENTS

Several criteria for mesh adaptation have been developed based on an error function whose
definition is motivated by function variation and error estimates for linear interpolation. In
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particular, the isotropy and uniformity criteria, (6) and (7), are shown to correspond to
the practical regularity and uniformity properties of a computational mesh, respectively. It
is also shown that isotropy is equivalent to conformity while uniformity is equivalent to
equidistribution from the mesh adaptation point of view.

FunctionalsI iso and Iep that respectively accommodate the isotropy and equidistribu-
tion requirements are constructed using discrete and continuous inequalities. Functional
I [ξ] that compromises these conditions is formulated by naturally combiningI iso and Iep.
Two parametersq ≥ 1 andθ ∈ (0, 0.5] are involved in the formulation. Whenq = 1, I [ξ]
becomesI iso, which leads exactly to the widely used functional for harmonic mappings
in two dimensions. Whenθ = 0.5, I [ξ] gives rise to a functional that is known to have
a unique minimizer. The equidistribution functionalIep can be obtained by takingθ = 0.
Unlike many existing mesh adaptation functionals, the geometric meaning of minimization
of the developed functionalI [ξ] is clear by construction. That is, the smaller the value of
θ , the more closely the equidistribution is satisfied and the higher degree of mesh adap-
tation is achieved. On the other hand, the biggerθ is or the closer to 1 the value ofq,
the more regular or conformal and the less adaptive the mesh. These results also provide
a better understanding of the increasingly popular method of harmonic mapping in two
dimensions.

The numerical results have been presented to demonstrate the features ofI [ξ]. Par-
ticularly, they indicate that a mesh adaptation functional should have a certain degree of
equidistribution in order to produce reasonably accurate solutions. Our limited experience
shows that the choices for the values ofq andθ are not crucial. Generally, (and as done in our
numerical example), the choice ofq = 2 and 0.1≤ θ ≤ 0.5 seems to work well.θ cannot
be taken too close to zero, otherwiseI [ξ] will become nonconvex, and its minimization
problem will be difficult to solve.

The presented analysis and results can be used in two ways to define a proper mon-
itor function with the developed functional for practical problems. The simple way is
through the generalized equidistribution principle (12). With it, one can choose a mon-
itor function of Winslow’s type with the weight function being large in the area where
higher mesh concentration is desired. An example is to take the weight function as an
estimate of the error density function. The other is to use the error function (2). For ex-
ample, when considering the function variation, as shown in Section 2, we can choose
G = G3 ≡ I +∇u∇uT or G = G4 ≡

√
det(G3) if a monitor function of Winslow’s type

is preferred. In the meantime, when the error of linear interpolation is concerned,G =
G1 ≡ I + |H | or G = G2 ≡

√
det(G1) will be the choice. It is worth mentioning that with

the variational approach developed in this article, it is also possible to define the mon-
itor function based directly on error estimates. A study related to this topic is currently
underway.

Finally, we remark that the isotropy functionalI iso (11) leads to harmonic mappings
in two dimensions but different ones in three dimensions. This may not be a drawback
because it is unclear whether or not three dimensional harmonic mappings are invertible
even if the target space (i.e., the computational domain in mesh adaptation) is Euclidean
and has a convex boundary; e.g., see [20]. On the other hand, neither is it clear if a min-
imizer exists for the developed functionalI [ξ]. However, if a minimizer does exist for
a smaller value ofθ , the analysis and numerical results given in the preceding sections
suggest that the resultant coordinate transformation satisfy an approximate equidistribution
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relation

C1 ≤ J
√

g ≤ C2

with some positive constantsC1 andC2. As an immediate consequence, the JacobianJ will
not vanish and the coordinate transformation is at least locally nonsingular.

ACKNOWLEDGMENTS

The author is grateful to David M. Sloan for his encouragement and useful comments on this work. This work
was supported in part by the NSF under grant DMS-0074240.

REFERENCES

1. M. J. Baines, Least squares and approximate equidistribution in multidimensions,Numer. Meth. P.D.E.15,
605 (1999).

2. G. Beckett and J. A. Mackenzie, Convergence analysis of finite-difference approximations on equidistributed
grids to a singularly perturbed boundary value problems,J. Comput. Appl. Math.35, 109 (2000).

3. J. U. Brackbill, An adaptive grid with directional control,J. Comput. Phys.108, 38 (1993).

4. J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions,J. Comput. Phys.
46, 342 (1982).

5. W. Cao, W. Huang, and R. D. Russell, A study of monitor functions for two dimensional adaptive mesh
generation,SIAM J. Sci. Comput.20, 1978 (1999).

6. E. F. D’Azevedo, Optimal triangular mesh generation by coordinate transformation,SIAM J. Sci. Stat. Comput.
12, 755 (1991).

7. E. F. D’Azevedo and R. B. Simpson, On optimal triangular meshes for minimizing the gradient error,Numer.
Math.59, 321 (1991).

8. C. de Boor, Good approximation by splines with variables knots ii. InSpringer Lecture Notes Series 363
(Springer-Verlag, Berlin, 1973).

9. A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds,J. Comput. Phys.
95, 450 (1991).

10. J. E. Castillo (Ed.),Mathematics Aspects of Numerical Grid Generation.(Soc. for Industr. & Appl. Math.,
Philadelphia, 1991).

11. L. C. Evans,Partial Differential Equations, Graduate Studies in Mathematics (American Mathematical Soci-
ety, Providence, RI, 1998), Vol. 19.

12. R. Hagmeeijer, Grid adaption based on modified anisotropic diffusion equations formulated in the parametric
domain,J. Comput. Phys.115, 169 (1994).

13. G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities(Cambridge Univ. Press, Cambridge, UK, 1934).

14. W. Huang, Practical aspects of formulation and solution of moving mesh partial differential equations.
J. Comput. Phys.171, 753 (2001).

15. W. Huang and R. D. Russell, A high dimensional moving mesh strategy,Appl. Numer. Math.26, 63 (1997).

16. P. Knupp, Mesh generation using vector-fields,J. Comput. Phys.119, 142 (1995).

17. P. Knupp and S. Steinberg,Fundationals of Grid Generation(CRC Press, Boca Raton, FL, 1994).

18. P. M. Knupp, Jacobian-weighted elliptic grid generation,SIAM J. Sci. Comput.17, 1475 (1996).

19. P. M. Knupp and N. Robidoux, A framework for variational grid generation: conditioning the jacobian matrix
with matrix norms,SIAM J. Sci. Comput.21, 2029 (2000).

20. G. Liao, On harmonic maps. InMathematics Aspects of Numerical Grid Generation, edited by J. E. Castillo,
(Soc. for Industr. & Appl. Math., Philadelphia, 1991), pp. 123–130.



924 WEIZHANG HUANG

21. V. D. Liseikin,Grid Generation Methods(Springer-Verlag, Berlin, 1999).

22. Yu. G. Reshetnyak,Space Mappings with Bounded Distortion, Translation of Mathematical Monographs
(American Mathematical Society, Providence, RI, 1989), Vol. 73.

23. S. Steinberg and P. J. Roache, Variational grid generation,Numer. Meth. P.D.E.2, 71 (1986).

24. J. F. Thompson, Z. A. Warsi, and C. W. Mastin,Numerical Grid Generation: Foundations and Applications
(North-Holland, New York, 1985).

25. A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh,J. Comput.
Phys.1, 149 (1967).


	1. INTRODUCTION
	2. CRITERIA FOR MESH ADAPTATION
	3. ISOTROPIC ERROR DISTRIBUTION AND CONFORMITY
	4. UNIFORM ERROR DISTRIBUTION AND EQUIDISTRIBUTION
	5. MESH ADAPTATION EQUATION
	6. NUMERICAL EXPERIMENTS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE I
	TABLE II
	FIG. 9.
	FIG. 10.

	7. CONCLUSIONS AND COMMENTS
	ACKNOWLEDGMENTS
	REFERENCES

