
Preconditioning for the Dynamic Simulation of Reaction-Transport
Systems

Yuan He,*,† Weizhang Huang,‡ Kyle V. Camarda,† and Kenneth A. Bishop†

Departments of Chemical and Petroleum Engineering and Mathematics, The University of Kansas,
Lawrence, Kansas 66045

This paper presents an investigation of preconditioning techniques for the transient simulation
of reaction-diffusion systems that are commonly encountered in chemical process design
applications. Three model-based preconditioners were proposed. Their performance was compared
with that of a standard incomplete LU decomposition based preconditioner (P1). Two of the
model-based preconditioners, P2 and P3, were constructed using only the transport part of the
reaction-diffusion model: One of them was calculated using numerical differentiation while
the other was based on analytical formulas. Since the transport properties are commonly assumed
to be constant in transient numerical simulations, the resulting preconditioners are time-
independent and need to be calculated only once, at the beginning of the simulation, and thus
the efficiency of the simulation is significantly improved. The preconditioner P4 was constructed
by adding chemical reaction contributions, updated only when necessary during the entire
transient simulation. The numerical results for several test cases show that P4, by adding
reaction correction terms, is more effective in improving the speed of the reactor simulation
than the other two while maintaining the advantages of easy construction and low computational
cost. In addition, it was demonstrated that the preconditioner P4 can also be used as an
approximated Jacobian matrix for Newton’s iteration, which may improve the efficiency of the
simulation even further.

1. Introduction

Efficient simulation of chemical reactor models re-
quires efficient solution of the linear systems of alge-
braic equations that arise from the discretization of the
governing partial differential equations (PDE). Such
linear systems are often large and sparse and commonly
are solved numerically with an iterative method and
typically a Krylov subspace method1,2 such as the
conjugate residual method (CR).1 This work is partially
focused on searching for effective preconditioning tech-
niques for accelerating Krylov subspace methods, based
on physical insight to reaction-transport systems. Gen-
erally speaking, the finite element or finite difference
discretization of the PDE leads to a system having
condition number of order κ) O(h-2), where h denotes
the mesh size. In other words, the condition number
depends on the spatial dimension. The number of
iterations required by a Krylov subspace method to
reach a given level of precision in the solution is often
proportional to h-1. This slow convergence is seldom
affordable in numerical simulation of reactor models,
especially when a fine mesh is used. To improve the
efficiency of numerical simulation, the preconditioning
technique has proved to be an effective tool in numerical
solution of linear systems. The basic idea is simple and
is illustrated as follows.

Consider the numerical solution of a linear system
Ax) b. A nonsingular matrix P (called a preconditioner)
is sought such that (i) the linear system Py) c can be
solved at low cost and (ii) P is close to A in some sense

(such as κ(P-1A) , κ(A)). Two extreme cases are PdI
(which satisfies requirement (i) but not (ii)) and P) A
(which satisfies (ii) but not (i)). If a preconditioner P
satisfying both (i) and (ii) can be found, then the
preconditioned system P-1Ax) P-1b (which is equiva-
lent to the original system) can be solved with a Krylov
subspace method more efficiently than the original
system.

Preconditioners developed by various researchers
include both specialized and general-purpose types.
Some of the specialized preconditioners are proposed
according to the convergence properties of certain
methods. For example, there are certain preconditioners
that enhance the eigenvalue clustering of matrix A so
that the conjugate gradient method (CG) converges
much faster; there are also “split” preconditioners (M
) LLT, therefore L-1AL-Tu) L-1b, x) L-Tu) that
preserve the symmetric positive-definite property of the
original system. Other specialized preconditioners may
be developed from simplification of the governing equa-
tions of physical problems, e.g., the reaction-transport-
based preconditioner3 that comes with the DASPK
solver.

General-purpose preconditioners are used more often.
Some are developed from the stationary iterative meth-
ods for linear systems, such as the Jacobi, Gauss-Seidel,
SOR, and SSOR preconditioners.4 In reactor simulation
problems, it was found that a block diagonal precondi-
tioner like block-SSOR or block-Jacobi is often effective
for reaction-diffusion equations.5 Another group of com-
monly used preconditioners are developed from incom-
plete LU factorization (ILU).

When performing the LU factorization for matrix A
) LU, one almost always finds that L (lower triangular
matrix) and U (upper triangular matrix) contain non-

* To whom correspondence should be addressed. Tel.: 217-
244-6154. Fax: 217-333-5052. E-mail: yuanhe@uiuc.edu.

† Department of Chemical and Petroleum Engineering.
‡ Department of Mathematics.

5680 Ind. Eng. Chem. Res. 2005, 44, 5680-5690

10.1021/ie049052d CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/28/2005

zero values, so-called fill-ins, in many locations where
the original matrix A contains zeroes. Even worse, L
and U are significantly denser even though A is sparse.
Thus, exact LU factorization is not realistic for large-
scale problems because of its storage requirement and
huge computational cost. A compromise is to restrict the
number of locations in L and U where fill-ins are
allowed during the LU factorization process. This
reduces not only the space requirement for saving L and
U but also the number of operations since it is much
less expensive to compute the product LU when they
have a small percentage of nonzero entries. An LU
factorization with restriction of the nonzero entry pat-
tern on L and U is commonly called the incomplete LU
factorization. The preconditioner that is defined as the
product of the approximated L and U, i.e., P) LU, is
referred to as an ILU preconditioner. Level one or two
fill-ins2 are widely used in practical computations. In
the former case, the nonzero entry pattern of L and U
is taken as the same as the original matrix A, while for
the latter case, the pattern of L and U is taken as the
same as that of the product of the lower and upper
triangular matrixes resulting from the level one fill-in
ILU factorization. Another technique, called row-sum
equivalence, adds the sum of the dropped entries during
the LU factorization process to the diagonal entries. It
has been shown5 that such a modified ILU precondi-
tioner reduces the condition number from O(h-2) to
O(h-1) for some cases. The fill-in entries can even be
multiplied by a relaxation factor w (0 e w e 1; w) 0.95
is often used) before being added to the main diagonal,
which does not reduce the dependence of the condition
number on the grid resolution of the differential equa-
tions, but should significantly accelerate the conver-
gence rate of the iterative solvers.4 However, in a
particular problem one should run tests to determine a
suitable choice of w to optimize the efficiency of iterative
solvers.

The objective of this paper is to investigate precon-
ditioning techniques for improving efficiency of numer-
ical simulation of transient reaction-transport systems
for fixed-bed reactor models. In total, four ILU precon-
ditioners based on the specific features of the underlying
governing partial differential equations are developed.
Their performances are examined for both dynamic and
near-steady cases with small and large time step sizes.
The cost of their construction is also addressed.

The organization of the paper is as follows. The
physical problem is described in section 2, followed by
a presentation of the numerical method for solving the
governing PDEs in section 3. Four ILU-based precon-
ditioners for reactive-transport systems are developed
in section 4. Section 5 addresses the simulation cases
for comparing the performance of these preconditioners.
Numerical results and analysis are presented in section
6. Finally, conclusions are drawn in section 7.

2. Problem Description

A 2D fixed-bed reactor simulation code has been
developed in the study to provide an efficient tool for
performing parametric studies on different reaction
systems and under different feed and radial cooling
conditions. The pseudo-homogeneous model chosen here
is a limiting case of a multiphase reactor model that
assumes no transport barriers exist between fluid and
solid phases. For the two-phase fixed-bed reactor, the
model can be derived from a multiphase heterogeneous

model by averaging physical properties of individual
phases using porosity as the weighting factor and
assuming that temperature and concentrations are
equivalent between phases. It reads as

subject to the boundary conditions

and the initial conditions

Bulk concentrations Ck for the k species and the bulk
temperature T are the unknown variables. It is noted
that the governing eqs 1 and 2 are coupled nonlinear
parabolic partial differential equations (PDE). The
coupled parts are the reaction terms Mk and H, both of
which contain the surface reaction rate rj. The rate rj
has a general form of rj) Sj exp(-Aj/RTs)F(Ck,s,Coxy,s),
in which S is the pre-exponential factor, A is the
activation energy, Ts is the catalyst surface temperature,
and Coxy,s and Ck,s are surface concentrations of oxygen
and other species. In a pseudo-homogeneous model,
surface values are regarded as the same as those in the
bulk; therefore, F is indeed a nonlinear function of bulk
concentrations.

The scales in temperature and concentration values
are different, which often affects the accuracy and
efficiency of numerical simulation. The following di-
mensionless variables are used in the simulation:

3. Numerical Methods

The initial-boundary value problem (1)-(6) is dis-
cretized and solved numerically on the computational

∂Ck

∂t
) Der(∂2Ck

∂r2
+ 1

r
∂Ck

∂r) + Dez

∂
2Ck

∂z2
-

∂(Ck‚uz(z))
∂z

+ Mk k) 1, ..., N (1)

CpF∂T
∂t

) λer(∂2T
∂r2

+ 1
r

∂T
∂r) + λez

∂
2T

∂z2
- CpfG

∂T
∂z

+ H (2)

Mk) Fs(1 - ε)∑
j

Nk

wk,jrj (3)

H) Fs(1 - ε)∑
j

N

(-∆Hj)rj (4)

z) 0: -
∂Ck

∂z
) G

DezF
(Ck - Ck,0), k) 1, ..., N

- ∂T
∂z

)
GCpf

λez
(T - T0)

z) L:
∂Ck

∂z
) 0, ∂T

∂z
) 0

r) 0:
∂Ck

∂r
) 0, ∂T

∂r
) 0

r) R:
∂Ck

∂r
) 0, -λew(∂T

∂r)r)R
) hw(T - TC) (5)

Ck) Ck
0, T) T0 (6)

fk)
Ck

CA0
, θ) T

T0
, z*) z

L
, r*) r

R
(7)

Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005 5681

domain D) [0,1] × [0,1] in the z* - r* plane for a single
reactor tube under the assumption of axial symmetry;
see Figure 1. The domain is partitioned by a imax × jmax
rectangular grid with spacing ∆z*) 1/(imax - 1), ∆r*)
1/(jmax - 1). The approximations of f (the dimensionless
concentration) and θ (the dimensionless temperature)
are denoted by fi,j and θi,j, respectively, at the grid points
(z*, r*)) (zi

/, rj
/)) (i∆z*, j∆r*), i) 0, ..., imax - 1 and j

) 0, ..., jmax - 1. Since both the domain and the grid
are rectangular, finite differences can be used in both
the axial (from inlet to exit) and radial (from center to
wall) directions for discretizing the PDEs.

The Method of Lines (MOL) is employed for discretiz-
ing the PDEs. In the MOL, the PDEs are first dis-
cretized in space (using finite differences); the resulting
system of ordinary differential equations (ODE) or
ordinary differential-algebraic equations (DAE) is then
solved using an ODE or DAE solver. MOL allows the
spatial and time derivatives to be handled separately.
More importantly, the ODE or DAE system can be
readily solved by many existing ODE/DAE codes.

In this study, central finite differences are used to
discretize spatial derivatives to attain second-order
accuracy in the truncation error. The discrete form of
eqs 1 and 2 in dimensionless variables read as

where Mi,j,k and Hi,j are the coupled reaction/generation
terms that depend on both temperature and concentra-
tion profiles. It is noted that the differencing of the
PDEs is extended to the boundary points (with indices
i) 0, i) imax - 1, j) 0, or j) jmax - 1) for a second-
order treatment of the Neumann boundary conditions
(see the discussion in the following paragraph). The
discrete mass and energy balance equations must be
solved together with the Ergun equation,6 a one-

dimensional momentum balance equation predicting
pressure drop along a packed bed. The kinetic model
for the partial oxidation of o-xylene into phthalic
anhydride used is proposed by Calderbank et al.;7 see
Figure 2.

The boundary conditions are treated similarly (i) 0,
..., imax - 1, j) 0, ..., jmax - 1, k) 1, ..., N):

or

Note that fictitious variables (associated with sub-
scripts i) -1, i) imax , j) -1, and j) jmax) are used
in eqs 8-13, which represent the variable values outside
the simulation domain. They are introduced to warrant
that the numerical discretization of the boundary condi-
tions is consistent with internal equations. Since the
PDEs are extended to the boundary points in discreti-
zation, the discrete system (8)-(13) is well posed in the
sense that the number of unknown variables equals the
number of equations. Using the kinetic model in Figure
2, one can see that five equations must be solved at each
grid node, including four mass balance equations (8) for
independent species and one energy balance equation
(9).

Equations 8-13 form an index-one DAE system which
may be written in a more general and compact form as

where y is a vector of state variables (including tem-
perature and concentration values at interior and

Figure 1. The layout of the computational domain.

Fi,j,k ≡ dfi,j,k

dt
- [Der

R2rj
/∆r*

(rj+1/2
/

fi,j+1,k - fi,j,k

∆r*
-

rj-1/2
/

fi,j,k - fi,j-1,k

∆r*)+
Dez

L2(∆z*)2
(fi+1,j,k - 2fi,j,k +

fi-1,j,k) - 1
2L∆z*

(ui+1fi+1,j,k - ui-1fi-1,j,k) +
Mi,j,k

CA0]) 0

i) 0, ..., imax - 1, j) 0, ..., jmax - 1, k) 1, ..., N
(8)

Gi,j ≡ CpF
dθi,j

dt
- [λer

R2rj
/∆r*

(rj+1/2
/

θi,j+1 - θi,j

∆r*
-

rj-1/2
/

θi,j - θi,j-1

∆r*) +
λez

L2(∆z*)2
(θi+1,j - 2θi,j + θi-1,j) -

CpfG
2L∆z*

(θi+1,j - θi-1,j) +
Hi,j

T0]) 0

i) 0, ..., imax - 1, j) 0, ..., jmax - 1 (9)

Figure 2. The reaction network for partial oxidation of o-xylene
into phthalic anhydride.

z*) 0:
f-1,j,k - f1,j,k

2L∆z*
) G

DezF
(f0,j,k - ffeed,k),

θ-1,j - θ1,j

2L∆z*
)

GCpf

λez
(θ0,j - 1)

z*) 0: f-1,j,k) 2L∆z*G
DezF

(f0,j,k - ffeed,k) + f1,j,k, θ-1,j)

2L∆z*GCpf

λez
(θ0,j - 1) + θ1,j (10)

z*) 1: fimax,j,k) fimax-2,j,k, θimax,j) θimax-2,j (11)

r*) 0: fi,-1,k) fi,1,k, θi,-1) θi,1 (12)

r*) 1: fi,jmax
,k) fi,jmax-2,k, θi,jmax

) θi,jmax-2 -
2R∆r*hw

λer
(θi,jmax-1 - θCoolant) (13)

y′) f(t,y,u), g(t,y,u)) 0;

y(0)) y0
(14)

5682 Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005

boundary grid points), t is time (the independent vari-
able), and u is a vector of control variables (which are
the fictitious variables). In principle, the system can be
transformed into an ODE system by solving the bound-
ary conditions (10)-(13) for the fictitious variables and
substituting into those equations in (8) and (9) involving
the fictitious variables. Thus, the algebraic equations
and the control variable u (or the fictitious variables in
our situation) are eliminated. Compared to ODE sys-
tems, DAEs are more convenient to use because they
allow direct treatments of boundary conditions. But, it
should be pointed out that DAEs are relatively harder
to solve, often requiring consistent initial values for the
control variables. The reader is referred to, e.g., Ascher
and Petzold8 for more extensive discussion on the
numerical solution for DAEs.

For the simulation of fixed-bed reactors, a reactor
model involves processes such as convection, diffusion,
radiation, and chemical reactions. Each process has its
own time scale, drastically different among each other.
The resulting system (14) is often stiff in the sense that
the eigenvalues of the Jacobian matrix, ∂f/∂y) (∂fi/∂yj),
vary dramatically in magnitude.9 Implicit schemes are
commonly employed to integrate such stiff systems in
order to avoid extremely small steps required by explicit
schemes. The popular, general-purposed DAE solvers
DASSL10 and DASPK3 employ the Backward Differen-
tiation Formula (PDF), a multistep scheme. While here,
the one-step multi-stage Runge-Kutta method is con-
sidered. An implicit Runge-Kutta scheme provides
stability similar to a BDF scheme but does not need
another one-step method to start. The Singly Diagonally
Implicit Runge-Kutta (SDIRK) method is adopted in
this work. SDIRK is an implicit method that can be
implemented quite efficiently; e.g., see Alexander11 and
Cash.12 Our implementation of SDIRK is written in
C++, which integrates ODE or index-one DAE systems
with the resulting nonlinear algebraic equations being
solved using a damped Newton’s method. The linear
system (with the Jacobian matrix as its coefficient
matrix) associated with Newton’s iteration is normally
large and sparse, which is solved using an iterative
scheme with/without preconditioning. While the C++
code provides several choices of iterative schemes, the
Conjugate Residual method (CR)1,2 is used in the
computations in this work. In these computations, the
linear system iteration and the Newton iteration are
stopped when the root-mean-square norm of the differ-
ence vector of two consecutive iterates is less than 10-7

and 10-6, respectively.

4. Preconditioners

The efficient integration of the system (14) relies on
efficient solution of the linear system of algebraic
equations resulting from the Newton iteration used to
solve the nonlinear equations in the implicit SDIRK
discretization. Efficient solution of such a system can
often be achieved by using effective preconditioning in
conjunction with an iterative scheme. All the precon-
ditioners studied here are constructed based on the
incomplete LU (ILU) factorization of a matrix A*,
namely, P) ILU(A*), which in turn approximated the
original Jacobian matrix ∂f/∂y) (∂fi/∂yj). The construc-
tion involved two levels of approximation: the first
approximated the Jacobian matrix and the second
approximately factored the approximate Jacobian ma-
trix using ILU factorization. The ILU factorization ILU-

(A*) basically maintains the sparsity of matrix A* and
requires O(n) operations to build, where n is the total
number of unknown variables (or the length of vector
y). To further save computer time, the preconditioner
is computed only once at each time step during the
transient solution of the reactor model. The same
computed preconditioner is used for all the stages of
SDIRK during each time step.

4.1. Full Finite Difference (FD) Jacobian Pre-
conditioner (P1). By applying numerical differentia-
tion to the residual of governing equations (eqs 8-13)
with respect to concentration and temperature vari-
ables, an approximated Jacobian A1

/ is obtained in a
straightforward way. The computation is optimized to
the discrete structure of the model equations so that
only the nonzero entries in the sparse Jacobian matrix
are evaluated and the number of residual evaluations
is minimized. The preconditioner P1 is then calculated
byP1) ILU(A1

/). Since A1
/ is actually a numerical

equivalent to the Jacobian matrix, one can expect that
P1 is most effective among all four preconditioners, but
also the most computationally costly among all.

4.2. Linear Finite Difference (FD) Jacobian Pre-
conditioner (P2). The construction of the precondi-
tioner P1 involves calculations of the highly nonlinear
reaction terms (eqs 3 and 4), and it has to be built at
each time step of simulation. This may significantly
increase the computational time of the transient nu-
merical simulation. Here, the idea of approximating the
Jacobian matrix using linear terms only is proposed in
order to speed up the construction of the preconditioner.
For the reaction-transport system (1) and (2), the linear
terms involve the time-independent transport part. By
numerical differentiation using finite differences, a
constant approximate Jacobian matrix A2

/ is generated,
which is then used for constructing a constant ILU
preconditioner P2. Note that P2 needs to be com-
puted only once at the beginning and can be used
throughout the entire simulation. By eliminating the
need of building the preconditioner at each time step,
it is expected that the overall computational time
required by transient simulations will be substantially
reduced.

4.3. Linear Analytical Jacobian Preconditioner
(P3). Having suppressed the nonlinear reaction terms
M and H, it was found that the linear part of the
governing equations was simple enough to derive the
analytical formula for its Jacobian matrix A3

/, consid-
ered as an approximation to the Jacobian matrix of the
full governing equations. We denote P3) ILU(A3

/). The
explicit formula of A3

/ is given by He13 for the fixed-bed
reactor model (8)-(13). This reaction-independent ana-
lytical Jacobian matrix can be used for simulations of
other problems sharing the same linear terms.

4.4. Linear Analytical Jacobian Preconditioner
with Finite Difference Reaction Corrections (P4).
Although the preconditioners P2 and P3 are computa-
tionally cheap to build, they may not be as effective in
preconditioning the Jacobian matrix as P1 since they
suppress the effects of the time-dependent, nonlinear
chemical reaction terms. Generally speaking, reaction
terms can play a significant role in transient reactions,
and suppression of their effects may degrade the quality
or effectiveness of the preconditioner and thus slow the
convergence of iterative solution of linear systems
within Newton’s iteration. To overcome this problem

Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005 5683

while maintaining the low cost of constructing the
preconditioner, it is possible to add a correction matrix
R* to the linear analytical Jacobian A3

/, whenever
needed, to acquire a better approximation A4

/) A3
/ +

R* to the Jacobian matrix. (It is noted that the linear
FD Jacobian A2

/ can also be used in case A3
/ is unavail-

able or it is more convenient to use A2
/.) Once A4

/ is
obtained, the preconditioner is computed as P4)
ILU(A4

/). For the system (10) and (15), the correction
matrix R* is computed by the numerical differentiation
of the reaction terms M and H.

With this approach, economics can be gained in
computing the approximate Jacobian matrix. Indeed, as
for P2 and P3, the constant part (A2

/ or A3
/) is computed

only once and saved. For the correction part R*, notice
that the reaction terms Mi,j,k and Hi,j at the grid point
(z*, r*)) (zi

/, rj
/) involve only the unknown variables

fi,j,k and θi,j at the same point. Consequently, R* is block
diagonal and its construction requires only a few evalu-
ations of the reaction terms M and H.

It should be pointed out, though, that every time the
correction matrix R* is added, the ILU factorization of
A4

/ should be re-built. The cost can be high if the
correction term and the preconditioner are calculated
every time step. To further improve the efficiency, they
should be recalculated only when necessary. In our
computations, the recalculation of R* and P4 is triggered
by monitoring the iteration number of the iterative
linear solver; that is, R* and P4 are recalculated if the
number of iterations of the linear solver at the current
step is 30% greater than that used in the last time step
or if Newton’s iteration fails. This is reasonable since
for a transient reactor simulation the solution converges
to a steady state and the number of iterations of the
linear solver is supposed to decrease.

5. Case Studies

5.1. Dynamic Case and Near-Steady Case. Tran-
sient simulations can be categorized into two cases. The
first one is the dynamic case where the time derivatives
of simulation variables are large, and the variables
change quickly with time. In the second case, when the
simulation is approaching a steady state, the change of
simulation variables is small along the time; it is called
the near-steady case. The initial guess of Newton’s
iteration at each time step is chosen as the result from
the last time step. In the dynamic case, the initial guess
is often poor since the values of the variables may
change significantly. Consequently, more computational
time is needed since the convergence is slower. More-
over, the approximate Jacobian matrix calculated at the
last time step may not be good enough for the current
time step, and a recalculation is normally required. This
in turn forces the recalculation of the preconditioner,
and thus slows down the entire simulation. In contrast,
the computation at the near-steady case is relatively
easy since the result from the last time step is a good
initial guess for Newton’s iteration at the current time
step and the same Jacobian matrix and preconditioner
can be used again at the current (and future) time step
without much degradation in the rate of convergence.

5.2. Two Extreme Stages of a Reactor Start-up
Process. To evaluate the performance of the four
preconditioners described in section 4, two transient
simulation test cases are examined: the beginning and

ending stages of the start-up of the reactor. At the
beginning stage of the reactor start-up, both the con-
centration and temperature variables (y) and their
changes with time (y′) evolve quickly from one time step
to another; therefore, it can be regarded as the dynamic
case. The opposite situation is observed when the reactor
is operated at the final stage of the start-up, which can
be regarded as the near-steady case.

The importance of the reaction terms to the calcula-
tion of the Jacobian matrix are different in the above
two cases. The difference is due to the different tem-
perature and concentration profiles in the reactor at
these two transient stages; see Figure 3. For the
exothermic reaction system considered, at the beginning
stage (time) 5 s.), the temperature is low and therefore
the reactions are slow. At the final near-steady-state
stage (time) 50 s.), the temperature is high and the
reaction rates are also high. However, the reactant is
also consumed faster along the reactor and the actual
reaction rates are limited by the availability of the
reactant.

The significance of the reaction terms to the
Jacobian calculation in the aforementioned cases can
be explained most clearly by using an example. Consider
the reaction network shown in Figure 2, which can be
reasonably simplified to a single reaction: A f B,14

where A is o-xylene and B is phthalic anhydride.
With this single step, the generation terms M and
H in governing equations (1) and (2) can be written
as

where Poxy is the partial pressure of oxygen, set at 0.21
atm as constant, PA) CART, heat of reaction ∆H)
-308269 cal/mol, rate constant k) exp(11.597 - 13636/
T) mol/gcat-atm2-s. Rewrite the governing equations (1)
and (2) into the form F) Fdiffusion+convection + Freaction, in
which Freaction) [M, H], and the transport part
Fdiffusion+convection is given in (1) and (2). The Jacobian
matrix used for the Newton’s iteration of the SDIRK
method is therefore

in which y) [CA, T] and y′) [CA′, T′]. Here the
Jacobian matrix A4

/ consists of the summation of the
transport contribution and reaction contribution. It
is a block pentadiagonal matrix with each block of
size 2 × 2. Again note the reaction terms appear only
at the main block diagonal of the Jacobian matrix. For
node (i,i) of A4

/, the reaction contribution terms are
given by

M) Fs(1 - ε)kPoxyPA

H) Fs(1 - ε)(-∆HjkPoxyPA)
(15)

A4
/) ∂F

∂y′∂t
+ ∂F

∂y

) [∂Fdiffusion+convection

∂y′∂t
+

∂Fdiffusion+convection

∂y] +

[∂Freaction

∂y′∂t
+

∂Freaction

∂y] (16)

) A3
/ + R*

5684 Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005

Assume a constant inlet concentration that is given
as CA) 0.176 mol/m3. Using the values given in the
first paragraph of section 6, it can be calculated that at
T) 693 K, R11

/) 3.43, R12
/) 0.018, R21

/) 1.06 × 106,
and R22

/) 5.55 × 103, while at T) 793 K, R11
/) 46.93,

R12
/) 0.189, R21

/) 1.45 × 107, and R22
/) 5.82 × 104. On

the other hand, the diagonal transport contribution
terms are at O(107) at both temperatures (for a simula-
tion with 33 × 11 nodes and dt) 0.001 s.). Therefore,
the contribution to the Jacobian calculation from one
of the reaction terms, R21

/ , is significant, and its sig-
nificance even increases with the temperature. How-
ever, neglecting reaction terms only affects the approxi-
mation of the Jacobian matrix at about one-fourth of
diagonal positions, and only when the reactor is oper-
ated at a high temperature. In addition, in the reality
of the transient simulation, the concentration of the
reactant (CA) decreases quickly with time and along the
reactor. From Figure 3, it is observed that, at 50 s, the
concentration of the reactant o-xylene is nonzero only
at the inlet part of the reactor, although the overall
reactor temperature is high. Therefore, two other terms
R12

/ and R22
/ are nonzero only at the inlet part of the

reactor. In summary, the overall significance of the
reaction terms to the Jacobian calculation varies with
operating conditions, intrinsic characteristics of the
reactor, simulation time, and spatial resolution and may
not be as large as thought.

5.3. The Effect of Different Step Sizes. In tran-
sient simulations, the size of the time step also affects
the computation speed. For a fixed time length (tfinal -
tstart) simulation, the use of a smaller time step (which
requires more time steps to complete the simulation) is
more likely to slow the simulation. This is because more
computation is required overall, although Newton’s
iteration converges relatively faster. Nevertheless, a
small time step size is still desired in certain cases, e.g.,
to observe a transition process closely, or to overcome
the numerical problems caused by the stiffness of the
model.

Before the reactor reaches a steady state in the
simulation, the concentration and temperature values
vary significantly over a large time step. Numerically,
a large step size transient simulation is equivalent to
the dynamic case while a small step size transient
simulation is equivalent to the near-steady case.

Figure 3. The transient reactor profiles for the first 50 s of the reactor start-up. Images shown are simulated results over a 103 × 2.54
cm (axial × radial distance) axial symmetric domain of a cylindrical reactor (the axial distance covers the first 1/3 length of the entire
reactor) at different time stages. The images were rotated 37.5° clockwise. The left edge of each image is the reactor inlet, and the image
edge toward the reader is the wall of the reactor.

Ri,i
/) [R11

/ R12
/

R21
/ R22

/]
(i,i)

)

[Fs(1 - ε)‚e(11.597)-(13636/T)PoxyRT Fs(1 - ε)Poxy‚CAR(1 + 13636
T)‚e(11.597-(13636/T))

Fs(1 - ε)‚e(11.597-(13636/T))‚(-∆H)PoxyRT Fs(1 - ε)(-∆H)‚PoxyCAR(1 + 13636
T)‚e(11.597-(13636/T))]

(i,i)

(17)

Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005 5685

6. Numerical Results and Discussion

The transient pseudo-homogeneous fixed-bed reactor
model is discretized using the MOL approach over the
spatial domain (eqs 8-13), and the resulting DAE
system is integrated using the SDIRK scheme and the
Conjugate Residual (CR) iterative linear solver. Kinetic
parameters include the activation energies and pre-
exponential terms that were estimated using a quasi-
Newton’s method with the steady-state experimental
data of the air oxidation of o-xylene to phthalic anhy-
dride by Calderbank et al.7 Unless otherwise stated,
numerical experiments are conducted under the follow-
ing conditions: reactor tube radius) 2.54 cm, reactor
length) 3 m, Preactor) 1 atm, ε) 0.56, Cp,f) 1.086
J/m/g/K, Cp,s) 0.95 J/m/g/K, and Fs) 2097 kg/m3. For
a reactor start-up process, the preheated reactor and
the coolant are at a temperature of 693 K. The feed
conditions are as follows: temperature 693 K, 1%
o-xylene (molar ratio) or Co-xylene) 0.176 mol/m3 and
G) 4746 kg/m2/h.

The following discussion is based on the results of
reactor start-up simulations at three different mesh
resolutions of the two-dimensional spatial domain (axial
and radial directions): 33 × 9 (totally 33 × 9 × 5)
1485 equations); 66 × 18 (totally 66 × 18 × 5) 5940
equations); and 132 × 36 (totally 132 × 36 × 5) 23760
equations). Two fixed time step sizes are used, dt) 0.02
and dt) 0.2 s. In the figures, the complete FD Jacobian
preconditioner (P1) is called “FD Jacobian”, the linear
FD Jacobian preconditioner (P2) is called “FD Linear”,
the linear analytical Jacobian preconditioner (P3) is
called “Analytical Linear”, and the linear analytical
Jacobian preconditioner (P4) with FD reaction correction
is called “Analytical Linear w/FD Reaction Correction”.
The case of transient simulation for the first 10 s of
reactor start-up is regarded as the initial stage of the
transient simulation and is denoted as “Initial” while
the case of transient simulation for the last 10 s of
reactor start-up, when the reactor is approaching its
steady state, is denoted by “S.S.”

6.1. Effects of Fill-in Levels on Performance of
ILU Preconditioners. The comparison between the
computational performances of preconditioning using
different levels of fill-in is shown in Figure 4. To
demonstrate the overall improvement in the efficiency
of the computation using the ILU preconditioning
technique, Figure 4a also contains the results for the
same simulation without using any preconditioning. It
is evident that the improvement is dramatic.

By construction, a higher fill-in level of an ILU
preconditioner leads to a better ILU factorization to the
approximate Jacobian matrix because fewer elements
are discarded. At the initial stage of a transient simula-
tion with a large time step, the reactor concentration
and temperature profiles vary significantly over a single
time step. In this case, Newton’s iteration requires less
computational time with a higher fill-in level ILU
preconditioner since the corresponding linear system
can be solved faster with a better preconditioner.
However, a level two fill-in preconditioner is more
expensive to compute than a level one fill-in precondi-
tioner. When an accurate preconditioner is not neces-
sary, using a level 2 fill-in preconditioner can actually
slow the computation. For example, for the case of the
transient simulation with small time steps (dt) 0.02),
which is the numerically equivalent near-steady case,
the Newton’s iteration converges very fast since the

values of the variables do not change significantly over
each time step. In this case, the savings in solving the
corresponding linear system with a high-quality pre-
conditioner only accounts for a very small percentage
of the total computational time. Indeed, the level one
fill-in ILU preconditioner outperforms the level two fill-
in ILU preconditioner (Figure 4, dt) 0.02). On the other
hand, it can be seen from Figure 4b that when a larger
step size is used (dt) 0.2, the numerically dynamic
case), the better quality, level two fill-in ILU precondi-
tioner outperforms the level one preconditioner. In this
case, Newton’s method takes more iteration to converge
and the efficiency in solving the underlying linear
system is important. Generally speaking, level one fill-
in ILU preconditioners are recommended for small step
size transient simulations while level two (and higher)
fill-in ones are suggested for large time step size
simulations. But how big should a time step be regarded
as large? For the fixed-bed reactor start-up test cases
in this study, our numerical experiments show that, at
the initial stage of the transient simulation, a step size
greater than 0.05 can be regarded as “large”. However,
when the reactor is approaching steady state, a “large”
step size must be any value greater than 0.15. A
quantitative definition of small and large step size for
general cases is always difficult, and it is more realistic
to make the decision with test simulations.

6.2. Performance of the Preconditioners. The
performance of the four preconditioners described in
section 4 is compared for various simulations. For
comparison purposes, all of the preconditioners are
constructed using level 2 fill-ins. For all cases (Figures

Figure 4. The computational time for simulating the initial 10 s
of the reactor start-up; the complete finite difference Jacobian
preconditioner (P1) is used with level 1 and 2 fill-in ILU.

5686 Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005

5a-d), it is found that the simulations using the
complete FD Jacobian preconditioner (P1) are consis-
tently the slowest, and therefore P1 is excluded from the
following discussion.

The first set of results is acquired using dt) 0.2 at
the initial stage of the reactor start-up example (Figure
5a). This is a “dynamic + dynamic” case (large time step
size + large variation of the variables over each time
step), where the quality of the preconditioners is im-
portant to the efficiency of the transient simulation. It
was expected that the performance of the Analytical
Linear w/FD Reaction Correction preconditioner (P4)
should be better than the other less accurate ones.
Interestingly, the results show that it performs only
marginally better than P2 and P3, which are calculated
based on the linear, time-independent part of the
governing equations and have the advantage of ex-
tremely low construction cost.

The second set of results is obtained by using a
smaller time step size (dt) 0.02) at the initial stage
(Figure 5b), which is a “near-steady + dynamic” case
(small time step size + large variation of the variables
over each time step). The third set of results is computed
by using a larger time step size (dt) 0.2) at the nearly
steady-state stage (Figure 5c), which is a “dynamic +
near-steady” case. In these two cases, the quality of the
preconditioners and the cost of calculating the Jacobian

matrix and the preconditioners are both important to
the overall efficiency of the computation. Recall that,
for our transient simulation test cases, the reaction
terms are not significant to the approximation of the
Jacobian matrix. It is evident that the three precondi-
tioners (P2, P3, and P4) perform equally well. The
Analytical Linear w/FD Reaction Correction precondi-
tioner (P4) again performs slightly better than P2 and
P3, while the performance of the latter two is barely
distinguishable.

The last set of results is acquired using a small step
size (dt) 0.02) at the nearly-steady-state stage of the
reactor start-up example (Figure 5d). This is a “near-
steady + near-steady” case, where Newton’s method
converges fast at each time step. The cost of calculating
the Jacobian matrix and the preconditioner dominates
the overall computational time of the transient simula-
tion. Recall that the cost of constructing the precondi-
tioners is on the order of Analytical Linear (P3) < FD
Linear (P2) < Analytical Linear w/FD Reaction Correc-
tion (P4) < FD Jacobian (P1). It can be seen that the
computational time required for the simulations using
these preconditioners basically is in the same order.

The above results show that the preconditioners P2
and P3 based on the linear part of the governing
equations are easy to construct and have extremely low
construction cost while being effective in improving the

Figure 5. The computational time for simulating 10 s at the initial and steady-state stages of the reactor start-up with dt) 0.2 or 0.02
s. All preconditioners use level 2 fill-in.

Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005 5687

efficiency of the transient simulation in our test ex-
amples. On the other hand, for the general reactor
simulations where the reaction terms can be very
important to the Jacobian matrix approximation, the
Analytical Linear w/FD Reaction Correction precondi-
tioner (P4) is recommended. P4 takes into account the
reaction terms and therefore performs better than or
at least comparable to P2 and P3.

6.3. Using Linear-Approximated Jacobian with
Reaction Corrections in both Preconditioning and
Newton’s Method. Since P4 is an easily computable,
good approximation to the actual Jacobian A in New-
ton’s method, performance improvement is expected in
certain cases when it is used as the Jacobian in
Newton’s method. On the other hand, Newton’s iteration
with P4 takes longer to converge since P4 is not the exact
Jacobian. The question is: under what condition which
of the competing factors is dominant. Here the speed of
a transient simulation is compared using the actual
Jacobian A against using the preconditioner P4 as the
Jacobian in Newton’s method. In either case, the pre-
conditioner P4 is used for preconditioning. Results are
shown in Figure 6.

It can be observed that the use of P4 for both
preconditioning and Newton’s iteration shows improve-

ments in computation time in all cases except for the
“dynamic + dynamic” one (Figure 6a), where the
convergence speed of Newton’s iteration is most sensi-
tive to the accuracy of the Jacobian matrix calculation.
Since, for stable problems, the “dynamic + dynamic”
case is normally just a small fraction in the entire
duration of a transient simulation (e.g., the reactor
start-up process considered), it can be concluded that
using the preconditioner P4 for both preconditioning and
as the iteration Jacobian matrix for Newton’s method
is able to enhance the overall efficiency of transient
reactor simulations, especially when high temporal and
spatial resolutions are needed.

7. Conclusions

This study investigated the construction and ef-
ficiency of time-independent preconditioners based on
the linear part of the governing equations of the
reaction-transport systems. The idea is to use only the
transport part of the governing equations to calculate
the preconditioner. In our implementation, instead of
applying the incomplete LU (ILU) factorization on the
actual Jacobian (which gives preconditioner P1), two
new preconditioners are constructed by applying ILU

Figure 6. The performance of the linear-approximated analytical Jacobian with reaction corrections (P4) as used for either preconditioning
only or for both preconditioning and Newton’s iteration. (10 s of simulations during the initial and the steady-state stage of the reactor
start-up; dt) 0.02 and 0.2; level 2 fill-in ILU.)

5688 Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005

on linear-approximated Jacobians: P2 uses an ap-
proximated Jacobian by numerical differentiation and
P3 uses an approximated Jacobian with analytical
formulas. Since the transport properties are commonly
assumed constant in transient numerical simulations,
the resulting preconditioners are constant matrixes,
which need to be calculated only once, at the beginning
of the simulation. Therefore, this approach essentially
eliminated the preconditioner computation portion from
the overall cost of the transient simulation. Upon this
basic idea, preconditioner P4 was proposed, which is a
variation of the linear-approximated preconditioner P3
achieved by adding the previously ignored chemical
reaction contributions. To minimize the computation
required by calculating P4, the reaction correction terms
are computed only at a few time steps during the entire
transient simulation, when the convergence of the
underlying sparse linear solver becomes slower at the
current time step than at the previous step.

By performing transient simulations in both dynamic
(the variation of the variables is large over each time
step) and near-steady cases (the variation of the vari-
ables is small over each time step), it was demonstrated
that the level 2 fill-in ILU preconditioner performs
better in dynamic cases, while the level 1 fill-in ILU
preconditioner performs better in near-steady cases. It
was also shown that preconditioners P2, P3, and P4
consistently outperform the standard complete ILU
preconditioner P1, due to their negligible computational
cost in the overall computation. It was found that, for
our transient reactor simulation examples, neglecting
chemical reaction terms did not significantly affect the
quality of the preconditioners; therefore, P2, P3, and P4
performed similarly in all cases, although P4 is slightly
better than the others. However, P4 is recommended for
general transient reactor simulations since the chemical
reactions are normally important. P4 not only considers
chemical reactions but also has all the advantages of
P2 and P3 (easy to construct and compute), due to its
adjustable updating frequency of the reaction terms.

It was also demonstrated in the study that using the
preconditioner P4 simultaneously for preconditioning
and as the Jacobian of Newton’s iteration may further
speed up certain transient reactor simulations. One
should be aware that, in strongly dynamic cases when
the variation of the variables is significant over time
steps, the use of any approximated matrix to replace
the actual Jacobian in Newton’s iteration could slow the
overall simulation. However, if such a case is only a
small fraction of the scope of the transient simulation,
then it has been shown that using P4 for both precon-
ditioning and Newton’s iteration significantly increases
the overall speed of transient reactor simulations at
high resolutions.

Acknowledgment

This work was supported in part by the National
Science Foundation (PACI) and the National Compu-
tational Science Alliance (UNI 12581).

Nomenclature

Aj) activation energy for reaction step j
A*) Jacobian matrix, calculated
Ck) concentration of species k, mol/m3

Cp) heat capacity of the reactor, J/g/K
Cpf) heat capacity of the fluid, J/g/K

De) effective diffusivity, m2/s
Dt) diameter of the reactor tube, m
f) dimensionless concentration, fk) ck/cox,0
Fi,j,k) mass transport residual function for species k at

2D grid node (i,j)
Gi,j) heat transport residual function at 2D grid node (i,j)
G) flow rate, g/m2/s
L) length of the reactor, m
hw) wall heat transfer coefficient, J/s/m2/k
H) energy generation term, J/m3/s
Mk) mass generation term for species k, mol/m3/s
N) total number of reaction steps
Nk) total number of reaction steps that involve species k
P) total pressure, atm
P) preconditioning matrix
r) distances in radial direction, m
R) radius, m
R) gas law constant, 8.3145 J/mol/K
R*) partial Jacobian matrix that contains reaction terms

only
rj) surface reaction rate of step j, mol/g/s
T) temperature, K
Tc) coolant temperature, K
t) time, s
u) velocity in axial direction, m/s
wk,j) stoichiometric constant for reaction step j to species

k
y) vector of concentration and temperature variables
z) distances in axial direction, m

Greek Symbols

∆Hj) heat of reaction of step j, cal/mol
ε) porosity of the bed
F) density, g/m3

θ) dimensionless temperature, θ) T/T0
λe) effective heat conductivity, J/s/m/K

Superscripts

*) dimensionless length
*) approximated matrix
0) initial condition

Subscripts

0) feed
A) o-xylene
f) fluid phase
k) partial value for species k
oxy) oxygen
p) pellet
r) radial direction
s) solid-fluid interface
z) axial direction
w) reactor tube wall

Literature Cited

(1) Greenbaum, A. Iterative Methods for Solving Linear Sys-
tems; Society for Industrial and Applied Mathematics: Philadel-
phia, 1997.

(2) Gutknecht, M. H. Variants of BICGSTAB for Matrices with
Complex Spectrum. SIAM J. Sci. Comput. 1993, 14, 1020.

(3) Brown, P. N.; Hindmarsh, A. C.; Petzold, L. R. Using Krylov
methods in the solution of large-scale differential-algebraic sys-
tems. SIAM J. Sci. Comput. 1994, 15, 1467.

(4) Langtangen, H. P. Computational Partial Differential Equa-
tions: Numerical Methods and Diffpack Programming; Springer:
Berlin; New York, 1999.

(5) Lee, D. Local Preconditioning of the Euler and Navier-
Stokes Equations.. Ph.D. Dissertation, The University of Michigan,
1996.

(6) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport
Phenomena; Wiley: New York, 1960.

Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005 5689

(7) Calderbank, P. H.; Chandrasekhharan, K; Fumagalli, C.
The Prediction of the Performance of Packed-Bed Catalytic Reac-
tors in the Air-Oxidation of O-xylene. Chem. Eng. Sci. 1977, 32,
1435.

(8) Ascher, U. M.; Petzold, L. R. Computer methods for Ordinary
Differential Equations and Differential-Algebraic Equations; So-
ciety for Industrial and Applied Mathematics: Philadelphia, 1998.

(9) Ebert, K. H., Deuflhard, P., Jäger, W., Eds. Modelling of
Chemical Reaction Systems; Springer Series in Chemical Physics
18; Springer-Verlag: Berlin, 1981.

(10) Petzold, L. R. A Description of DASSL: A Differential/
algebraic System Solver; Scientific Computing: North-Holland,
Amsterdam, 1983.

(11) Alexander, R. Diagonally implicit Runge-Kutta methods
for stiff O.D.E.’s. SIAM J. Numer. Anal. 1977, 14, 1006.

(12) Cash, J. R. Diagonally implicit Runge-Kutta formulae
with error estimates. J. Inst. Math. Appl. 1979, 24, 293.

(13) He, Y. Simulation Studies on a Non-isothermal, Non-
adiabatic, Fixed-bed Reactor. Ph.D. Dissertation, The University
of Kansas, 2003.

(14) Varma, A.; Morbidelli, M.; Wu, H. Parametric Sensitivity
in Chemical Systems; Cambridge University Press: New York,
1999.

Received for review September 28, 2004
Revised manuscript received April 12, 2005

Accepted April 25, 2005

IE049052D

5690 Ind. Eng. Chem. Res., Vol. 44, No. 15, 2005

