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MOVING MESH PARTIAL DIFFERENTIAL EQUATIONS
(MMPDES) BASED ON THE EQUIDISTRIBUTION PRINCIPLE*

WEIZHANG HUANG', YUHE RENf, AND ROBERT D. RUSSELL'

Abstract. This paper considers several moving mesh partial differential equations that are
related to the equidistribution principle. Several of these are new, and some correspond to discrete
moving mesh equations that have been used by others. Their stability is analyzed and it is seen
that a key term for most of these moving mesh PDEs is a source-like term that measures the level of
equidistribution. It is shown that under weak assumptions mesh crossing cannot occur for most of
them. Finally, numerical experiments for these various moving mesh PDEs are performed to study
their relative properties.
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1. Introduction. Adaptive mesh methods have been widely used in the last
decade for solving differential equations that involve large solution variations, such as
shock waves, boundary layers, and contact surfaces (e.g., see [11]). It has been amply
demonstrated that significant improvements in accuracy and efficiency can be gained
by adapting mesh points so that they are concentrated about areas of large solution
variation.

For the numerical solution of time-dependent differential equations, adaptive
methods can be roughly divided into two categories, static and dynamic. For static
methods, the discrete solution and equation are initially defined on a given mesh.
During the calculation, a new mesh that might have a different number of nodes from
the old mesh is constructed, based on properties of a certain function that measures
the goodness of the approximation. The solution is then interpolated from the old
mesh to the new mesh, and a new discrete approximation to the solution is defined
on the new mesh. The redistribution of the old nodes, the addition of new nodes, and
the interpolation of the dependent variables from the old mesh to the new mesh are
done at a fixed time. While static methods are generally robust for problems where
regions of rapid variation move with time, the continual readjustment can tend to
slow the computation, making these methods inefficient.

In this paper, we consider the alternative dynamic methods (often called moving
mesh methods). For this type, a mesh equation that involves node speeds is employed
to move a mesh having a fixed number of nodes in such a way that the nodes remain
concentrated in regions of rapid variation of the solution. The mesh equation and the
original differential equation are often solved simultaneously for the physical solution
and the mesh. Unlike static methods, interpolation of dependent variables from the
old mesh to the new mesh is unnecessary. Among moving mesh methods, the moving
finite element method (MFE) of Miller [18], [19] and the moving finite difference
method of Dorfi and Drury [7] have aroused considerable interest. The MFE uses a
very natural and elegant formulation to control mesh movement. The solution and
mesh are both obtained by a process closely associated with equidistribution of one
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error measure: the residual of the original equation written in finite element form.
While the MFE has been subject to some criticism because of its complexity and
sensitivity with respect to certain user defined input parameters [9], proper choice
of these parameters unquestionably leads to an efficient method. The method in [7]
is based upon a moving mesh equation obtained directly from an equidistribution
principle. It is recommended in [9] for actual applications because of its simplicity
and its insensitivity of selecting the parameters.

The equidistribution principle, or EP, first introduced by de Boor [5] for solving
boundary value problems for ordinary differential equations, involves selecting mesh
points such that some measure of the solution error is equalized over each subinter-
val. It has turned out to be an excellent principle for formulating moving mesh equa-
tions. In fact, a number of moving mesh methods have been developed, and almost
all are based at some point on an EP. The MFE can be strongly linked to some EPs
when it is applied to parabolic differential equations [12]. Adjerid and Flaherty [1],
[2] introduce an error estimate to handle mesh movement based on an EP. In [3],
(8], [14], [20], and [21] several other moving mesh methods are developed, based di-
rectly on EPs. Nevertheless, the constructions are very different, and in their final
forms the moving mesh equations appear to be quite different from each other. It has
proven to be surprisingly difficult to derive consistently reliable moving mesh equa-
tions. In addition to the capability of concentrating sufficient points about regions of
rapid variation of the solution, a satisfactory mesh equation should be simple, easy
to program, and reasonably insensitive to the choice of its adjustable parameters. As
compared with the problem of discretizing the underlying physical equation, this task
is purely artificial. That is, the construction of a moving mesh equation cannot be
guided completely by physical arguments and must rely on some numerical princi-
ples. Furthermore, because most of them have been developed in a discrete form,
comparison and theoretical analysis of the moving mesh methods can be difficult.

To facilitate a better understanding of these methods and to allow for a better
comparison of their basic properties, we find it useful here to derive continuous moving
mesh equations corresponding to the discrete moving mesh equations. In addition, we
derive several new continuous moving mesh equations based directly on EPs. Finally,
we perform a theoretical and computational study of these continuous moving mesh
equations. Besides investigating the relative advantages of the reliable methods (like
[7]) for solving PDEs in one space dimension, our ultimate concern is to develop
methods for which extension to higher dimensions is possible.

Henceforth, in contrast with a discrete moving mesh equation, which is an ordi-
nary differential equation system, a continuous moving mesh equation will be referred
to as a moving mesh partial differential equation, or MMPDE.

An outline of this paper is as follows. In §2 several different approaches are used
to derive a variety of MMPDEs. The theoretical and computational analysis of these
MMPDE:s is given in §§3 and 4, respectively. Section 5 contains conclusions and
further discussion.

2. Moving mesh PDEs. In this section, three approaches will be described to
construct MMPDEs for the node speed. ‘The first two are directly based on EPs.
For the second one, which is new, the deviation of the moving mesh from the (exact)
equidistribution mesh plays a fundamental role in the construction of the MMPDE.
For the third approach, although it is based on so-called attraction and repulsion
pseudoforces between nodes, the resulting MMPDEs are also closely related to the
EP. The first and third approaches have been used previously by many authors to
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develop moving mesh methods, but the mesh equations have usually been represented
in a discrete form. Thus, in addition to reviewing discrete mesh equations, we are
also deriving their corresponding MMPDE:s.

Since all MMPDE:s considered in this section are related to the EP, we first give
a detailed description of it. Let xz and £ denote the physical and computational
coordinates, respectively, both of which are without loss of generality assumed to be
the unit interval [0, 1] in real space. A one-to-one coordinate transformation between
these domains is denoted by

(1) T = $(£,t>, £ € [01 1]
with 2(0,t) =0, z(1,t) =1,

where ¢ denotes time. Hereafter, we shall employ the following notation:

of
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for an arbitrary function f = f(z,t) = f(z(&,t),t). Suppose that a uniform mesh is
given on the computational domain by

3) &=—, i=0,1,..,n,
where n is a certain positive integer, and denote the corresponding mesh in z by

{z0,21,...,2,}. Values of an arbitary function f on this computational mesh will be
denoted by

(4) fi = f(&,t).

For a chosen monitor function M(z,t) (> 0) that provides some measure of
the computational error in the solution of the underlying physical PDE, the (one-
dimensional) EP can be expressed in its integral form [22] as

x(&,t)
(5) /0 M(&,t)di = £0(1),

(6) o(t) = /0 1 M(z,t)da.
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Differentiating (5) with respect to £ once and twice, we obtain two differential
forms of the EP,

(7) M(w(&t),t)%x(g,t) _—

0
s (M0 2aen} = o

Since EPs (5), (7), and (8) do not contain the node speed #(¢,t), for reasons which
will become more apparent later, they will be called quasi-static EPs (QSEPs).
Now we consider how to construct MMPDE based on these QSEPs.

2.1. MMPDE:s constructed by time differentiation of QSEPs. In (8], Fla-
herty et al. differentiate the integral form (5) of the EP with respect to time to obtain
a MMPDE

z(&1) g )
9) M(z(€, ), 1)i(£, 1) + /O o M (3, 0)dz = £0(0)

Then, (9) is discretized in space on the mesh (3) by finite differences to give an ODE
system

=) g 1.
(10) M;(t)x;(t) — My—1(t)di—1(t) +/ —M(Z,t)dz = =0(t), i=1,2,..,n.
xl—l(t) at n
Anderson (3] and Hindman and Spencer [14] discuss conversion of QSEPs into
MMPDE:s by differentiation with respect to time (see also [11]). For example, Hind-
man and Spencer consider an equation

0’z oz\*
(11) 6_§2 + (a—£> P=0,
where P, called a forcing function, is given by
1 0M [0z 2
(12 P=3i% ()

By differentiating (11) with respect to time, they obtain an MMPDE that is equiva-
lent to (9). This is true because (11) can be obtained by taking the second derivative
of QSEP (5) with respect to £. After transforming the original PDE into the compu-
tational coordinate system, a time integration algorithm is applied alternately to the
transformed PDE and to the matrix equation for the node speeds. The time integra-
tion algorithm used is either an implicit first- or second-order method or the explicit
second-order predictor-corrector MacCormack method. There is the tendency for the
nodes to drift out of optimal adjustment despite the use of the matrix equation for
the node speeds. To compensate for this, the node positions are periodically adjusted
using a tridiagonal matrix equation based on the approximation of (11) by centered
finite differences.

In [20] and [21], Ren and Russell obtain a conservative form of an MMPDE, which
is easily derived by differentiating (7) with respect to time. In particular, we have

0 . OM Oz

(13) 58 (M&)+ oo

=0(t),
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and dividing by ¢ and using (2) and (7), we obtain

0 oM M6(t)
(14 () + o = 220,
which is their MMPDE. By construction, it is evident that the MMPDE (14) (or (13))
is mathematically equivalent to the MMPDE (9). However, since (14) is written in
a conservative differential form, the (semi-)discrete forms and the stabilities of these
MMPDEs may be different. In fact, numerical experiments verify this (see [21]).
The function 6(t) appearing in (9), (13), and (14) is not convenient for actual
computation. We can eliminate (t) by differentiating (9) twice with respect to & to
obtain

d [0 0
= o (3)} -0
and
0 o0t 0 (OM . 0 (OM oz
(MMPDED e (3e) 2 (52) =% (o )
or by differentiating (13) once to obtain
02 . 0 (OM O

Recall that these MMPDESs are obtained by differentiation of a QSEP with respect to
time. The process of differentiation implicitly assumes that z(,t) satisfies this QSEP
at any time. This is of course not generally true in actual computations. Moreover,
from the boundary conditions on z(¢,t), these MMPDEs have zero speed solutions if
%—At” is zero. This means that the mesh does not move if M(z,t) is independent of ¢

regardless of what the initial mesh is. Therefore, aé"f might be regarded as the source
of mesh movement, so its computation should be important. Unfortunately, in actual

applications aal‘t” is often not easy to calculate.

2.2. MMPDE:s involving a correction term. From the analysis in §2.1, we
see that it is desirable to derive an MMPDE in such a way that the deviation of the
computed mesh from the equidistribution mesh plays a role. Here, the EP (8) will be
employed, since 6(t) does not appear for this QSEP. We require the mesh to satisfy
the QSEP at the later time ¢t + 7 (0 < 7 < 1), instead of at ¢. That is, the mesh
satisfies

(17) ;{M(x(é t+71), t+7’) ({,t+7)} = 0.

Condition (17) gives a relaxation time 7 for the mesh to satisfy the QSEP. We can also
regard (17) as a condition to regularize the mesh movement. Using the expansions

0 0 .
&t +T) = gw(ﬁ,t)+ra—£:v(£,t)+0(r2),
) M(2(€,t+7),t+7) = Ma(€,1),1) + 7 o M(z(&, ), )

+ 7O M (E,0),0) +O(r?)
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in (17) and dropping higher-order terms, we obtain the MMPDE

0 oz 0 (OM .\ 0 (0OMOox 190 oz
onoen g (3e) + 5 (2) =5 (o o6) o (M)

which can be rewritten as

d [0 Oz 190 Ox
1 e (va) ) =+og (v15%)
or
02 . 0 (OM oz 10 0z
20) g 1) =~ (% 38 ) - o (3%
Compared to (MMPDE1), (MMPDE2) contains the additional “correction” term
10 0x
) v (Va):

which measures how closely the mesh z(&, t) satisfies the QSEP (see (8)). When z(¢, t)

is not equidistributed, (MMPDE2) moves the mesh toward equidistribution even when
M (x,t) is independent of ¢. In this sense, the often difficult to calculate term %At”— is

less important for (MMPDE2) than for (MMPDE1). Therefore, in principle it may
be argued that it is reasonable to drop the term g—g%M or both g—g%M and ia%M
in (MMPDE2). These give the simplifications

02 . 10 Oz
(MMPDE3) &ﬂsz_;%<M&)
and
0 ot 10 Oz

The approach of formulating MMPDESs with a correction term used in this section
is quite simple and is based directly on the EP. A desirable feature of this approach
is that it can be directly extended to higher space dimensions if a formula for an
equidistribution principle is available. Such a formula has recently been derived in
[15], and this extension is under investigation.

2.3. MMPDE:s based on attraction and repulsion pseudoforces. In this
section, we shall review some moving mesh methods that are based on attraction and
repulsion pseudoforces between nodes. A node attracts others when a measure of
the truncation error at this point is larger than average. If the measure is smaller
than average, the neighboring nodes are repelled. We shall also discuss the MMPDEs
that correspond to various discrete mesh equations that have been derived by this
approach.

Methods considered here compute node speeds in response to deviation in an
error measure from some average value. An error measure, denoted by W, is generally
related to some monitor function. In particular, the error measure is usually expressed
by

Lat1,

(22) W; = M (%, t)dz,

Ta
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where M is a certain error function. It will be useful to interpret this as a discrete
form of

or
23 W=M—=—,
(23 5
although the function M here may be slightly different from that in (22). This may
be motivated, e.g., by taking a simple approximation for (22) like the midpoint rule,

(24) Wi = Miy1/2(T0t1 — 24).

The error functions are often chosen to be proportional to the first and/or second
derivatives of the physical solutions, and probably the most common choices in prac-
tice are the arclength and curvature monitor functions.

In [4], Anderson computes the node speed by

. 10 oz
(MMPDES) =5 (M a_§> ,

where 7 is a positive constant. Regarding W as an error indicator, one sees from (24)
that (MMPDES) moves the nodes towards regions where the error is large. It also
forces the mesh to have zero speed whenever the mesh is equidistributed.

We now consider the method in [1] and [2]; the general observations will also
apply for the similar methods in [17] and [10]. Adjerid and Flaherty use an error
estimate E to control mesh movement. The node speed is determined by

(25) Fiy1 — 3 = =AW, — W),

where ) is a positive parameter, W; is an error indicator on the subinterval (z;, Tit1)s
and W is the average of the W, values. When W; is chosen as the square of the
local-error estimate in H!, W satisfies (23) with

(26) M = (E)*+ (%—f—)z.

By eliminating W by differencing two consecutive interval equations, (25) reads
(27) Tipl — 2T, + Ti—1 = —/\(WZ - W,_l).

If we denote A by 1 and use (23), we can regard (27) as a centered finite difference
approximation of the MMPDE

0%% 10 Ox

Indeed, most of the properties of the discrete mesh equation (27) can be derived from
(MMPDES).

In [16], Hyman and Larrouturou obtain two MMPDEs corresponding to what they
call an elliptic equation method and linear approximation method. These equations
are

o ( 8\  BOW
(28) % (Wa_> = o
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and

0? . Joxeli4
(29) Ox2 (Wz) = T 0z’
where W is a so-called mesh function and 3 (a positive constant) determines the
relaxation time with respect to the timescale 7. This timescale is chosen adaptively
based on the time variation of the physical solution.
The derivation of Hyman and Larrouturou for these MMPDEs, which is outlined
below, is based on the equation

(30) Wissjo = 20W = Wi o),

where W is the average of the W, /2 values. They approximate (30) by

,[_3 -
T

ow;
ptddanlLE (W = Wit1/2),

31
(31 6A$z+1/2

AZit12 =
where Az,,;/, denotes x;4; — ;. Assuming W — 0 as Az — 0 and using the
approximation

OW,ii1/2

: — ALy gy iH1/2
(32) Wz+1/2 Lit1/2 aA-’EH—l/Z,

we can rewrite (31) as

BA.'I.,'H_]/Q _ 'g W - W7.+1/2

33 =
(33) 8A11+1/2 T Wi+1/2

Multiplying by Wi/, and taking the difference over two consecutive intervals gives

6A$.i+1/2 aAm.1l—1/2 _ B

(34) Wit12 - Wz—l/2m = —;(Wi+1/2 —Wi_1/2),

aAﬁUz+1/2

which is just a discrete approximation of the MMPDE (28). Similarly, (29) can be
obtained when focusing on a particular mesh function that is sufficiently simple so that
# can be explicitly extracted from W in (30). In [16], the mesh function considered is

(35) Wiy12 = /$1+1 [ao + thm! + Za2|um|] dz,

7

where u denotes the physical solution and ag, a1, and ay are weighted coefficients.
Using (2) and (23), it is not difficult to see that (28) and (29) can be expressed in the
computational coordinate system by

0 (05 _ 50 (100
(36) %(M"B_J“ras(Maé)

and

o2 0 0?2 19) 0 0
(") s )+ 2 (355 /52 ) =25 (w3,
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TABLE 1
Summary information for the MMPDEs.

MMPDE | Equivalent Form | Related Reference
1 MMPDE1 present
9) (6], [8]
(14) 20], [21]
(13), (15), (16) present
others (3], [14]
2 MMPDE2 present
(19), (20) present
3 MMPDE3 present
4 MMPDE4 present
@8) (B=1) [16]
5 MMPDES5 [4]
6 MMPDES6 (1], [2], [10], [17]
7 MMPDE7 (7]

respectively. With 3 = 1, (36) is just (MMPDE4) so with this interpretation (28) is
equivalent to (MMPDE4). While (37) is similar to (MMPDES3), it has an extra term,
which is sufficiently complicated and so we shall not discuss it further.

We conclude that the MMPDEs obtained by the approach based on attraction
and repulsion pseudoforces between nodes are closely related to the EP. This is not
surprising since computing node speeds in response to a deviation in an error measure
from some average value has nearly the same effect as equidistributing a monitor
function. Unfortunately, it is unclear how this approach can be applied in general
to higher space dimensions. Even if this could be done from their construction using
discrete moving mesh equations (such as (30)), it is unclear how closely the resulting
MMPDE would be related to the EP.

In addition to the moving mesh methods considered herein, there are two other
popular types of methods, the moving finite element method [18], [19] and the moving
finite difference method in [7]. As of yet we have not found an MMPDE related to
the discrete mesh equation in MFE. However, ignoring the spatial smoothing, it is
easy to show that the MMPDE

0 0% 0 Ox\ 0z /Ozx 10 Ox
MMPDE?) — (M%) -2— (M= )2 /& _ 22 (yZ
( ) 65( 6&) as( a&)«%/a& T«%( a&)
corresponds to the discrete mesh equation used in the method of Dorfi and Drury [7].
Notice that if 7 can be well defined by % = % - 2‘3—2 ‘3—2’, then (MMPDE?) has the
same form as (MMPDE4) (with 7 replaced by 7), although the practical implications
of this relationship are not clear.

2.4. Remarks. In the previous subsections, several MMPDEs have been de-
rived. Their mathematically equivalent forms and related references are given in
Table 1.

We have seen that the term (21) appears in (MMPDEs 2-7). This term serves
as a source of mesh movement and can also be regarded as a mechanism to pull
the mesh back toward equidistribution of a monitor function when it drifts away from
equidistribution. In this sense, (MMPDESs 2-7) can be considered to be closely related
to the QSEP.
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The parameter 7 is introduced in (MMPDESs 2-7). It represents a timescale to
move the mesh to be equidistributed. It serves to prevent temporal oscillations and
hence produces a smoother mesh trajectory for z(£,t). When solving problems with
extremely large solution gradients, the numerical monitor values can be very sensitive
to small perturbations in the mesh, and the meshes generated via the spatial equidis-
tribution can have oscillations (see §4). This is detrimental for the numerical time
integration and causes difficulty in the iterative solution of the nonlinear equations
that arise in the implicit time integration with a stiff solver. A nonmoving mesh could
in theory occur for sufficiently large 7. However, for small values of 7, (MMPDEs 2-
7) will become dominated by the QSEP term, the resulting ODEs become stiff, and
temporal oscillations may arise. However, while the parameter 7 is critical, in our
experience the numerical methods are relatively insensitive to the actual choice of 7
in applications.

In contrast to the other MMPDESs, (MMPDEL1) has no correction term and hence
has no corresponding parameter. Since it can be obtained by taking the limit 7 — +oo
in (MMPDE2), (MMPDEL) and its variations can in some sense be said to take an
infinite time to equidistribute the mesh.

(MMPDE1) and (MMPDE2) contain the function a_(;\t/f__ This makes them more
complicated to use in actual applications than other MMPDEs. (MMPDEs 3-7) are
quite simple, with the node speed appearing linearly. This is useful for theoretical
purposes since we can integrate directly for the node speed and position (i.e., the
mesh itself).

3. Theoretical analysis of MMPDEs.

3.1. (MMPDE1). Assume that the mesh z(¢,t) satisfies MMPDEI exactly and
that a small perturbation 6z(£,0) is introduced. From the boundary conditions for
z(&,t), the perturbation must satisfy

(38) 6x(0,t) =0, 6x(1,t) =0,
and it is also assumed that
(39) |6z(&,t)] << 1.

If no additional errors are introduced for ¢ > 0, then the perturbed mesh z + 6z
satisfies

d [0 O(x +6x)\\ _
By linearizing (40) and using (15), to first order we obtain the perturbation equation
d (02
Integrating and using the boundary conditions leads to
M(z(£,0),0)
42 bx(€,t) = ——2—2=6x(€,0).
(42 (€)= 1o o0

A discrete form of this equation has been derived in [8] and [6]. For most choices of
M (z,t), the function

o M(2(£,0),0)
(43) L) = 2 M Gale, 0,0
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is likely to increase or to be bounded, and hence we cannot expect (MMPDEL) to
produce an asymptotically stable mesh. Nevertheless, for fixed £, (M(z(&,0),0))/
(M(xz(&,t),t)) can be sufficiently well behaved that éx(¢,t) remains small over mod-
erately large time intervals.

Interestingly, in [6] and (8] Petzold suggests modifying the discrete mesh equation
(10) to

371(t) a:,(t)
Mi(8)&:(t) — Mo_v(8)ie_1 (2) + / gtM(z £)di + A / M (3, t)ds
(44) 1 /\ Ty—1 t) m,..l(t)
= —f Z i =1,2,...
Yo+ dew,  i=12.m,

where A is a positive constant. The numerical results in [6] and [8] show that the
resulting mesh is globally (asymptotically) stable. Actually, (44) is a discrete approx-
imation of the MMPDE

(%(Mx)Jr OM Oz AMa =0+,

ot 8{ ¢

which upon differentiation is mathematically equivalent to (MMPDE2) with A = 1.

Thus, 2 56 (M 3””) has another interpretation, as a stablizing term in (MMPDEs 2-7).
Integratmg (16) with respect to £ and using the boundary conditions for z(&, ),

we obtain
0t - §M . _| 0z
o€ _[ i M2/ M:(@ /0 Mt(x’t)dx] 3¢

/ Mt d(L’,

which is easy to solve for —”é in terms of M and its derivatives. Assuming that

66 z(§,0) > 0, (46) implies that BE z(&,t) > 0 (i.e., the mesh does not cross) for all
t > 0 so long as

(45)

(46)

1
(a7) 4 / M(z,t)di > 0.
@ Jy

Otherwise, (MMPDE1) may produce crossing meshes, as we verify from the numerical
examples in §4.
It follows easily that if (15) holds, then

2 (et 0.0 Zote ) = 2 (tste 0,00 )

Hence, the extent to which the mesh generated by (MMPDEL1) satisfies the QSEP is
completely determined from the initial mesh by this relationship.

3.2. (MMPDE2). The analysis for (MMPDE2) is similar to that of
(MMPDEL). From a linear stability analysis, we have
e—% M(Cll(f, O)a 0)
M(z(¢,1),1)

(48)

(49) bx(&,t) = 6x(&,0).
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Thus, if L(t) in (43) increases slower than e~ 7, (MMPDE2) produces an asymptoti-
cally stable mesh.
As in the derivation of (46) from (16) we have from (20) that

% - [ T (Mt + M/7)(&,t)di

ot M M2
gMz ! - ~ aiL‘
(50) M, (M, + M/T)(:I),t)d:l)] %

LM [/OlMt(fc,t)di + %/OIM(E,t)dfr] .

Assuming a%x(ﬁ ,0) > 0, (50) implies that the mesh crossing cannot occur for all ¢t > 0
when

1 1
(51) i/ M(&,t)dz + 1/ M(&,t)dz > 0

or

(52) /M —%/ M (&

Obviously, the condition (52) is much weaker than (47).
Integrating (19) with respect to time leads to

(53) ;1.( (a(€,1),0) (€, t>> =e-%§§(M(x(s,o>, 0) g 0))

Thus, for large time (or small 7) the mesh produced by (MMPDE2) always tends
to equidistribute the mesh. Moreover, (53) gives a good interpretation of the pa-
rameter 7.

3.3. Other MMPDE:s. It is also straightforward to prove some results about
mesh crossing for (MMPDE:s 3, 4, and 6). It can easily be shown that

o _[ 1, My (" o £M
a—s—[‘?ﬂMz/oM(“”’“ /M ]5

| L
+T_M/0 M(Z,t)dz

o8 _ 10z 1
06 TOL M [ M~(z(E,t),t)dE

(54)

for (MMPDES3),

(55)

for (MMPDEA4), and
0r _ Moz 1 v
(56) 8_5 T o€ —/ M(z,t)dz

for (MMPDEG). Thus, if (MMPDEs 3, 4, and 6) are solved exactly, they cannot
produce mesh crossings.
For (MMPDES)

(57) b6, 1) = e+ Jo MEEDDdEg ¢ o)

Since M is positive for all ¢ > 0, this implies that the perturbation éz(&,t) must
decrease with time.
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4. Numerical examples for the MMPDEs. In this section, we shall do a
computational study of the MMPDEs. In practice, the MMPDEs are of course solved
in conjunction with some underlying physical PDE. Nevertheless, to facilitate our
study of the relative advantages and disadvantages of the methods we shall assume
that the physical solution u(z, t) is given exactly and only solve the MMPDEs.

For simplicity, M(z,t) is taken as the arclength monitor function

(59) M1+ (g_;f)z

For the discretization of the MMPDEs, we use finite difference methods in space. The
discrete approximations of (MMPDEs 1-7) on the uniform computational mesh 3)
are given, respectively, by

d
(59) 7 (Ei) =0,
d E;
(60) = (B)=-,
d . (M)iy1 + (My); N (My)i+ (My)ioa __E
(61) ai (E:) [*—2(%)2——(%“ ;) T(% Tio)| = gl
Mg+ M; ) M;+M;_, . . E;
(62) W(mi+l — &) — 2(“%)2(% —&i1) = -
E;
(63) —X; = _?a
1. L. E;
(64) @y [it1 — 22 + &1] = -
M1+ M; . My+M,_y,, . Tig1 — i1 E;
Toring \Titl = Ti) — —— 35— (T — %) 2B, —mMm—— = ——,
O T B Ty ke B L =S
Here, E; is the discrete approximation of 6% (M ‘g—z) at £ = ¢; given by
M1 + M; M; + M;_,
(66) E,; = —W(SL‘HJ — CL‘i) — W(l‘z — mi—l)'
The approximation %i to % {6% (M g—z)} at & =¢; is
dE; _ Mi+1+Mi(i‘ —it')— Mi+Mi—1(j:'_ . )
dt = 2(%)2 i+1 1 2(71_1)2 i Ti—1
Ma: i :L'z + Mz ii‘i M:c ifti + Mw i— j:i—
(67) + ( ) +1 +11 ; ( ) (zi+1 _xi) _ ( ) (1 2) 1 l(l'i _xi—l)
2(3) 2(3)
My);1 + (M, i M;); + (M, i—
+ ( t) ;—(11 )2( t) (xi-}-l _zi) _ ( t) ( t) l(xi _wi—l)a

= 2( )2

n

3=
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where M, and M; are calculated analytically. Although in most practical applications,
the monitor function is only given at mesh points, making M, and M, difficult to
calculate, it is desirable to use the forms (59)—(61) in order to preserve the conservative
properties of (MMPDEs 1-3) (also see (15) and (19)). For the boundary conditions,
we use

(68) Z0=0 and z,=0.

The discrete MMPDEs (59)—(65), associated with the boundary condition (68),
are solved using the stiff ODE solver LSODI (see [13]). Default values of parameters
of time integration in LSODI are used (i.e., topt = 0). The method of time integration
is chosen as the backward differentiation formulas (BDF) with chord iteration (mf =
25), for which an approximate Jacobian is computed by LSODI internally using finite
differences. Other required input data are the initial solution and initial mesh, output
times, and local time stepping error tolerances rtol and atol. Throughout, we use

(69) rtol = atol =107% and n = 20.

For the test of the deviation from the equidistribution mesh, we use the indicator
function

(70) E(t)= max |E(t)|.

T 2<i<n-1

We use the notation

n—1
My)iv1 + (M),
G(t) = Z M%(_t)(miﬂ — ;)
i=0
1a
(71) ~ | EZM(:E’ t)dz,
S(t) = Jnax. z;(t).
Two initial meshes will be used,
(72) z;(0) = % i=0,...,n
and

(73) z;(0) = zi™ — 8(x™ — i), i=1,...,n—-1,0<é6<1,
20(0) = 25", n(0) = 27",

where 7™, © = 0,...,n, is an equidistribution mesh associated with M(z, 0), which is
generated by (MMPDE2) with a method described later in this section. The param-
eter 6 serves to perturb this equidistribution mesh. The meshes (72) and (73) will be
abbreviated by UM and EM, respectively. For results reported, nts and jac denote the
total number of time steps and total number of Jacobian computations, respectively.
All computations are performed on a SPARC 1+ in double precision.

Example 4.1

(74) u(z,t) = e " tsin(rz), 0<z <Ll
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FiG. 1. Ezample 4.1: Mesh trajectories are generated by (MMPDEL) with initial meshes (a):
the UM, (b): the EM (6 = 0), (c): the EM (6 = 0.1) and (d): the EM (§ = 0.9).

TABLE 2
Ezample 4.1. 7 = 1073 is used.

MMPDE 2 3 4 5 6 7
nst 240 244 241 290 266 231
jac 34 39 39 45 49 30

This function is used in [6] to study the stability of some mesh equations. Since
ug(z,t) — 0, M(z,t) — 1 as t — +oo, and the equidistribution mesh will tend to a
uniform mesh in space. The time integration is from ¢ = 0 to t = 3.

For (MMPDE1), the mesh trajectories along with the measure of equidistribution
level E(t), size of %—At’[ as approximated by G(t) and stability measure L(t) (see (43))
are plotted in Figs. 1 and 2. Recall from §3.1 that the deviation from equidistribution
depends completely on the initial mesh. Actually, when starting with the initial
EM (6 = 0), the computed moving mesh stays almost equidistributed (Fig. 1(b))
with E(t) nearly constant (the bottom curve in Fig. 2(a)). Some oscillations in this
curve are caused by the time integration, and they can be reduced using smaller
tolerances. However, when the initial UM is used, E(t) is larger (Fig. 2(a)) and the
mesh moves in the wrong direction (Fig. 1(a)). Specifically, if the initial UM would
adjust to equidistribute M, it would move outwards from the center at some time
before t = 0.02 since the node concentration is larger near the middle than it is for
the EM (6 = 0). However, the mesh actually contracts towards the middle until the
mesh crossing takes place at about ¢ = 0.1. Recall from (47) that this is not to be
unexpected since G(t) is negative for this example (see Fig. 2(c)).

As shown in Fig. 2(c), L(t) exceeds unity but is bounded. Hence, the mesh might
be expected to be stable for small perturbations. To verify this, a computation is
performed with a perturbed initial EM (6§ = 0.1). The mesh trajectory is plotted
in Fig. 1(c). The perturbation is indeed bounded and small. However, if a larger
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Fi1G. 2. Ezample 4.1: The functions E(t), G(t) and L(t) associated with (MMPDE1) are plotted
for different initial meshes in (a), (b), and (c), respectively.
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F1G. 3. Ezample 4.1: Mesh trajectories are generated by (MMPDE4) with initial meshes (a):
the UM, (b): the EM (6§ = 0).

perturbation (6 = 0.9) is introduced in the initial mesh, the mesh (Fig. 1(d)) moves
far from the equidistribution mesh, and mesh crossing even occurs at the left end.
For (MMPDEs 2-7), the generated meshes are found to be fairly stable, and no
mesh crossing occurs. Representative results are illustrated in Fig. 3, which shows
the mesh trajectories produced by (MMPDE4) with the initial UM and EM (6 = 0).
These two trajectories are nearly the same after about ¢ = 0.01. In Figs. 4(a) and
4(b), E(t) and the mesh velocity S(t) are plotted for (MMPDEs 2-7). Figure 4(a)
shows that E(t) decreases, so the meshes move toward equidistribution as expected,
due to the presence of the correction term in the MMPDE. The timescale of the
movement depends on the particular MMPDE and value of 7. From Fig. 4, for
the fixed 7 value (MMPDES) has the shortest timescale, followed by (MMPDES).
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s(e)

1e-10 . N
1e-08  1le-07 1le-06 1e-05 0.0001 0.001  0.01 0.1 1
t axts

1e-08  1e-07  le-06  1e-05 0.0001 0,001  0.01 0.1 1
t axis

Fi1G. 4. Ezample 4.1: The functions E(t) and S(t) for (MMPDEs 2-7) with the initial mesh
UM in (a) and (b), respectively. Here, T = 1073 is used.

E(t)

F1G. 5. Ezample 4.1: The function E(t) is obtained by (MMPDE4) with the initial uniform
mesh for different values of T.

While (MMPDE2) gives an initially monotonically decreasing function E(t), it is also
sensitive to the accuracy of the time integration when E(t) is small. Figure 5 shows
E(t) for (MMPDE4) with 7 values 0.1, 1073, and 10™°. Values of nst and jac for
several runs are listed in Table 2.

Ezample 4.2.
w(@,t) = - 1 tanh(c(t)(z — t — 0.4))]
(75) 2 (108~ 1)
o) =1+ 14 tanh(100(t ~ 0.2))], 0<w <1, 0<t<055.

This solution represents a wave that moves towards x = 1. The wave is smooth at
the beginning and then suddenly develops a steep gradient at about ¢ = 0.2.

Computations are performed with an initial uniform mesh, which, for this ex-
ample, is a good approximation (E(0) ~ 0.133) of the initial equidistribution mesh.
Hence, (MMPDEL1) could be expected to work well. Indeed, this is the case, as can
be seen from the mesh trajectories shown in Fig. 7(a).

The functions E(t) and S(t) for (MMPDEs 1-6) with 7 = 1073 are plotted in
Figs. 6(a) and 6(b), respectively. Notice that there are significant oscillations for the
top three curves in Fig. 6(a), which correspond to (MMPDEs 3, 4, and 6). Actually,
similar but smaller oscillations occur for other curves. This can also be readily seen
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FIG. 6. Ezample 4.2: The functions E(t) and S(t) for (MMPDEs 1-6) with the initial mesh
UM are plotted in (a) and (b), respectively. Here, 7 = 1073 is used.
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FIG. 7. Ezample 4.2: Mesh trajectories, which start with the initial uniform mesh, are generated
(a) by (MMPDEL1), (b) by (MMPDEB) with 7 = 1073, (c) by (MMPDE4) with 7 = 1073, and (d)
by (MMPDE3) with 7 = 107°.

for the mesh trajectories shown in Figs. 7(a)-7(c). This phenomenon is due to the
fact that the mesh is adjusted to equidistribute the monitor function, and some nodes
go into and some out of the region of high solution gradient as the wave moves. Since
the wave is fairly steep, the variation of speed of these nodes is significant and results
in oscillations in the mesh trajectories and other related quantities. Figure 6 shows
that for this 7, (MMPDES3) is most sensitive to these oscillations. Nevertheless, the
mesh trajectory produced by (MMPDES3) follows the wave front (see Fig. 7(b)). The
deviation from the equidistribution mesh is also related to these oscillations, and for
the smaller value 1072 for 7, the oscillations are reduced. The resulting E(t) for the
MMPDE:s is shown in Fig. 8, and the mesh trajectory for (MMPDES3) is plotted in
Fig. 7(c). A remark is in order regarding the performance of (MMPDE7). Using
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E(t)

Fic. 8. Ezample 4.2: The function E(t) obtained with the initial mesh UM and 7 = 107° is
plotted for (MMPDEs 1-6).

TABLE 3
Ezample 4.2.
T MMPDE 1 2 3 4 5 6
1073 nst 809 894 1349 1075 1353 959
jac 143 150 240 195 282 167
10—° nst 809 1333 1369 1929 1463 1367
jac 143 311 334 591 328 325

several values for 7 between 0.1 to 10~°, the ODE solver LSODI fails with an error
message that the time step size is too small (< 10~®). The reason is not completely
clear, but it may be due to the oscillations mentioned above.

We find that for this problem that the meshes generated by (MMPDEs 1-6) are
all quite stable. The results also show that with a small value for 7 (MMPDEs 3-6)
move the mesh to preserve equidistribution. For all of the computations performed,
no mesh crossing occurs for this example. Summary information for nst and jac is
listed in Table 3.

We conclude this section with a description of a method that uses the MMPDEs
to generate an initial equidistribution mesh. To be specific, we only discuss it for the
solution u(x,0) in (75) with ¢(0) = 103. Since u(z,0) is quite steep at z = 0.4, it is
natural to employ a (pseudo-)time integration of the MMPDE to steady state with
the resulting solution being the equidistribution mesh for u(z,0). For an illustration,
we let

t, 0<t<10?,
(76) olt) = { 108, 10° <t,

discretize the MMPDE, and integrate the resulting ODE from ¢ = 0 to 10*. We use
a relative error indicator

1
(77) R(t) = \Joax | mlEi(tﬂ
here since M (z, t) is very large. Computations are performed for (MMPDEs 1-6) with
an initial uniform mesh and 7 = 1073, R(¢) and S(t) for (MMPDEs 1-6) are plotted
in Fig. 9, and the mesh trajectories for (MMPDEs 1 and 2) are shown in Fig. 10. The
corresponding values of nst and jac are listed in Table 4.
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FIG. 9. Initial mesh generation: The functions E(t) and S(t) for (MMPDEs 1-6) with the
initial mesh UM are plotted in (a) and (b), respectively. Here, T = 10~3 is used.
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F1G. 10. Initial mesh generation: Mesh trajectories, which start with the initial uniform mesh,
are generated (a) by (MMPDEL), (b) by (MMPDE2) with + = 10~3.

5. Conclusions and comments. Several MMPDEs related to the equidistribu-
tion principle have been derived and studied theoretically and numerically. It is seen
that (MMPDEL1), a commonly used approach, must be used with care. The deviation
from the equidistribution mesh for (MMPDEL1) depends strongly on the initial mesh,
and mesh crossings can take place in some situations.

(MMPDE2) is shown to have several desirable properties. While it can easily be
analyzed theoretically, a computational difficulty is that the function %—Af is needed
(as it is for (MMPDEL)). Its simplified versions, (MMPDEs 3 and 4), not only have
most of the properties of (MMPDE2), but also are much easier to use.

(MMPDEs 2-4 and 6) can all be easily shown to avoid mesh crossing in theory,
and in our limited experience no mesh crossing has occurred when (MMPDEs 2-7) are
discretized and the mesh computed numerically. The deviation from the equidistribu-
tion mesh associated with (MMPDESs 3-7) can be shown to be small for sufficiently
small values of 7. The correction term (21) in (MMPDEs 2-7) can be interpreted as a
source of mesh movement, as a stablizing term, and as a mechanism to pull the mesh
back toward equidistribution. We have developed, as a side benefit of the MMPDEs, a
natural and practical way to generate an equidistribution mesh for the initial solution
to a PDE.

The main purpose of these MMPDE:s is of course to formulate simple, robust
moving mesh methods that are solved along with an underlying PDE. In this paper
we have only considered the MMPDE itself and seen that the discrete solutions gen-
erally seem to inherit the nice theoretical properties of the continuous solutions to
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TABLE 4
Initial mesh generation. T = 1073 is used.

MMPDE 1 2 3 4 5 6
nst 303 589 558 581 541 572
jac 49 129 126 134 111 136

the MMPDESs. A moving finite difference method based on (MMPDEs 3-6) has been
designed, and preliminary results for it, which will appear elsewhere, are promising.
Moreover, extensions to higher space dimensions are currently underway.
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