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Abstract

The key to the success of a variational mesh adaptation method is to define a proper monitor function which

controls mesh adaptation. In this paper we study the choice of the monitor function for the variational adaptive mesh

method developed in the previous work [J. Comput. Phys. 174 (2001) 924]. Two types of monitor functions, scalar

matrix and non-scalar matrix ones, are defined based on asymptotic estimates of interpolation error obtained using the

interpolation theory of finite element methods. The choice of the adaptation intensity parameter is also discussed for

each of these monitor functions. Asymptotic bounds on interpolation error are obtained for adaptive meshes that

satisfy the regularity and equidistribution conditions. Two-dimensional numerical results are given to verify the

theoretical findings.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we are concerned with variational mesh adaptation in the numerical solution of partial

differential equations. A variational method utilizes a functional to determine the coordinate transfor-

mation needed for mesh generation. Such a functional is often formulated to measure difficulties in the

numerical approximation of the physical solution, and typically involves a so-called monitor function that

is prescribed by the user to control mesh concentration.
The most straightforward approach of formulating an adaptation functional is to directly minimize

a certain error or one of its bounds. Unfortunately, this approach often leads to an ill-conditioned
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minimization problem and thus has rarely been used in the past. Instead, almost all of the existing vari-

ational methods have been developed based on geometric considerations; e.g., see [5,6,11,14,17,19,20,25,29]

and the books [12,18,22,26] and references therein. For example, Brackbill and Saltzman [6] develop a

popular method by combining mesh concentration, smoothness, and orthogonality. Dvinsky [11] uses the

energy of harmonic mappings as his mesh adaptation functional. Knupp [17,19] and Knupp and Robidoux

[20] develop functionals based on the idea of conditioning the Jacobian matrix of the coordinate trans-

formation. But, these geometry-based variational methods are not without problems. Their lacking a direct

connection with some error makes it tricky to choose a proper monitor function for practical problems. It
also makes it extremely difficult to perform error analysis on the resulting adaptive meshes.

Motivated by the need of an error-oriented as well as well-conditioned mesh adaptation functional,

Huang [16] has recently proposed a new method based on the isotropy (or regularity) and equidistri-

bution criteria. These criteria are devised from the requirement that the physical solution be well re-

solved in the computational domain by a uniform mesh. The developed mesh adaptation functional

leads to a reasonably well-conditioned mesh system and is directly connected to interpolation error of a

function.

In this paper we continue the development of [16] and investigate the in-depth relation of the new
method with interpolation error. The key to the success of a variational mesh adaptation method is to

choose a proper monitor function which controls mesh adaptation. The objective of this work is to define

the monitor function for the new variational method based on estimates of interpolation error. To this end,

we first develop several asymptotic estimates for interpolation error in terms of a coordinate transformation

between the physical and computational domains. The main tool we use is the interpolation theory of finite

element methods. We then carry the estimation further using the so-called regularity and equidistribution

condition: see (41) and (42). (To some extent, minimizing the functional of [16] tends to minimize the

functions on the left-hand sides of the conditions.) The monitor function and bounds on interpolation error
are finally obtained.

An outline of this paper is as follows. In Section 2 we briefly describe the variational mesh adaptation

method of [16]. In Section 3 interpolation error estimates are developed in terms of a coordinate trans-

formation between the physical and computational domains. These results are used in Section 4 to define

both scalar (Winslow�s type) and non-scalar matrix monitor functions. (A scalar matrix is defined as the

product of a scalar function with the identity matrix.) In the same section, the choice of the intensity

parameter is discussed, and error bounds on adaptive meshes are obtained under the regularity and

equidistribution conditions that formulate the approximate satisfaction of the isotropy and equidistribution
criteria. Two-dimensional numerical results are presented in Section 5 to show that the method of [16],

together with the monitor functions developed in Section 4, is able to produce adaptive meshes that satisfy

the conditions. Finally, conclusions are drawn in Section 6.

2. Variational mesh adaptation

Denote by X � Rn, n ¼ 1; 2, or 3 the physical domain and Xc the logical or computational domain which
is chosen artificially for the purpose of mesh adaptation. We consider mesh generation as a mathematical

equivalent of determining a one-to-one coordinate transformation x ¼ xðnÞ from Xc to X in the sense that

adaptive meshes are generated as images of a prescribed and often uniform computational mesh under

x ¼ xðnÞ. The coordinate transformation is defined in a variational method as the minimizer of a functional

measuring difficulties in the numerical approximation of the physical solution.

A new strategy of formulating the adaptation functional is proposed in [16]. That is, the coordinate

transformation is sought such that, for a given n� n symmetric positive definite matrix G ¼ GðxÞ (which is

often referred to as the monitor function), the ‘‘error’’ function
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EðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � n0Þ

T
Jðn0Þ

TGðxðn0ÞÞJðn0Þðn � n0Þ
q

ð1Þ

is uniformly distributed about n0 2 Xc. This requires

J�1G�1J�T ¼ cI ; ð2Þ

where J ¼ ðoxÞ=ðonÞ, for some positive constant c. Criterion (2) is equivalent to the combination of the

following conditions:

Isotropy criterion:

k1 ¼ � � � ¼ kn; ð3Þ

Equidistribution criterion:ffiffiffiffiffiffiffiffiffiffiffiY
i

ki
r

¼ constant; ð4Þ

where ki; i ¼ 1; . . . ; n, are the eigenvalues of J�1G�1J�T.
Regarding the isotropy criterion, the refined version of the arithmetic–geometric mean inequality [21]

leads to

1

nðn� 1Þ
X
i<j

ffiffiffiffi
ki

p�
�

ffiffiffiffi
kj

p �2
6

1

n

X
i

ki �
Y
i
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 !1
n

6
1

n

X
i<j

ffiffiffiffi
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p�
�

ffiffiffiffi
kj

p �2
: ð5Þ

For some number qP 1, Jensen�s inequality gives

1

n

X
i

ki

 !nq
2

�
Y
i

ki

 !q
2

P
1

nðn� 1Þ
X
i<j

ð
ffiffiffiffi
ki

p"
�

ffiffiffiffi
kj

p
Þ2
#nq

2

: ð6Þ

This shows that ki�s can be made to be as equal as possible by minimizing the left-hand side of the in-

equality. Notice that

X
i

ki ¼ trðJ�1G�1J�TÞ ¼
X
i

ðrniÞTG�1rni;
Y
i

ki ¼ detðJ�1G�1J�TÞ ¼ 1

J 2g
;

where J and g are the determinants of J and G, respectively. Multiplying the left-hand side of (6) with
ffiffiffi
g

p

and integrating over X, we obtain the isotropy functional

Iiso½n� ¼
Z

X

ffiffiffi
g

p X
i

ðrniÞTG�1rni
 !nq

2

2
4 � n

nq
2

ffiffiffi
g

p

ðJ ffiffiffi
g

p Þq

3
5dx: ð7Þ

On the other hand, the equidistribution criterion (4) can be rewritten as

J
ffiffiffi
g

p ¼ r; ð8Þ

where r is a constant that can be found from (8), viz.,

r ¼ 1

jXcj

Z
X

ffiffiffi
g

p
dx: ð9Þ
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Eq. (8) is a multi-dimensional generalization of the well-known (one-dimensional) equidistribution prin-

ciple [10]. Function J
ffiffiffi
g

p
can be made to be as flat as possible by minimizing the functional

Iep½n� ¼
Z

X

ffiffiffi
g

p

ðJ ffiffiffi
g

p Þq dx ð10Þ

for some q > 1.

A functional balancing isotropy and equidistribution is obtained in [16] by combining Iiso½n� and Iep½n�,
i.e.,

I ½n� ¼ h
Z

X

ffiffiffi
g

p X
i

ðrniÞTG�1rni
 !nq

2

dxþ ð1� 2hÞn
nq
2

Z
X

ffiffiffi
g

p

ðJ ffiffiffi
g

p Þq dx; ð11Þ

where h 2 ð0; 1=2� and qP 1. Note that the integrals in (11) have the same dimension and thus the weight

parameter h is dimensionless. The smaller h is, the closer the equidistribution (8) is satisfied. Moreover, the

second integral becomes constant for q ¼ 1 and vanishes for h ¼ 1=2. In these situations, I ½n� is equivalent
or equal to the first integral, which is a well-conditioned functional in the sense that its minimizer exists

uniquely and satisfies the maximum principle: e.g., see [13,23]. A special case is q ¼ 1 and n ¼ 2, where I ½n�
becomes the energy functional of harmonic mappings. It is known [11,24] that a two-dimensional harmonic

mapping is non-singular if Xc is convex.

I ½n� appears to have minimizers. This is because I ½n� is coercive for h 2 ð0; 1=2� and the non-convexity

part of the functional – the equidistribution integral – is known (at least numerically) to have many

minimizers. A minimizer of I ½n� seems to be non-singular too. When h is close 1/2, the second integral can be

considered as a perturbation to the first one. Thus, the minimizer of I ½n� is close to the unique and non-

singular minimizer of the first integral and therefore is non-singular. On the other hand, when h is close to

zero, the second part of (11) dominates the functional and the equidistribution (8) is satisfied closely. As a
consequence, a minimizer satisfying (8) is locally non-singular.

For q > 1, the first integral in (11) is not quadratic. Nevertheless, the numerical solution for its minimizer

is relatively easy because of its convexity. The main difficulty comes from the equidistribution part. Indeed,

we do experience convergence difficulties in non-linear iteration for small values of h (e.g. h ¼ 0:001) for
very rough physical solutions. In this situation, we recommend to use under-relaxation in the non-linear

iteration. A continuation procedure in h will also be helpful.

3. Interpolation error estimates

In this section we develop interpolation error estimates in terms of coordinate transformations between

X and Xc. The results will be used in Section 4 for defining the monitor function G ¼ GðxÞ, the key to the

success of the variational mesh adaptation method described in the preceding section.

3.1. The classic results

Let D̂D and D ¼ F ðD̂DÞ be affine equivalent open subsets of Rn, where F is an invertible affine mapping.

Denote by k � k and k � kF the Euclidean and Frobenius matrix norms, respectively. Let C be the generic

constant. For notational simplicity, we assume in this section that, when appearing simultaneously in one

equation, function v defined in D and function v̂v defined in D̂D are related to each other through v ¼ v̂v � F �1

or v̂v ¼ v � F .
The results of the following three lemmas are standard in the context of finite element methods. The

interested reader is referred to [9] for their proofs.
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Lemma 3.1. For mP 0, there exists a constant C ¼ Cðm; nÞ such that

jv̂vjm;D̂D6CkF 0km � j detðF 0Þj�
1
2 � jvjm;D 8v 2 HmðDÞ;

where F 0 is the Jacobian matrix of mapping F and j � jm;D̂D and j � jm;D denote the semi-norms of Sobolev spaces
HmðD̂DÞ and HmðDÞ, respectively. Similarly,

jvjm;D6CkðF 0Þ�1km � j detðF 0Þj
1
2 � jv̂vjm;D̂D 8v̂v 2 HmðD̂DÞ:

Lemma 3.2. Denote by hD the diameter and qD the in-diameter of D, i.e., hD ¼ diamðDÞ and
qD ¼ supfdiamðSÞ : S is a ball contained in Dg. Define hD̂D and qD̂D similarly. Then,

kF 0k6 hD
qD̂D

and kðF 0Þ�1k6 hD̂D
qD

:

Lemma 3.3. For some integers m and k: 06m6 k þ 1, let HmðD̂DÞ and Hkþ1ðD̂DÞ be Sobolev spaces and let
P̂P 2 LðHkþ1ðD̂DÞ;HmðD̂DÞÞ be an operator such that

P̂Pp̂p ¼ p̂p 8p̂p 2 PkðD̂DÞ;

where PkðD̂DÞ is the space of polynomials of degree no more than k. Then,

jv̂v� P̂Pv̂vjm;D̂D6CðP̂P; D̂DÞ � jv̂vjkþ1;X̂X 8v̂v 2 Hkþ1ðD̂DÞ:

The classic estimate for interpolation error can readily be obtained from the above lemmas. Indeed,

assume that fThg is a regular family of quasi-uniform triangulations in X, viz.,

Regularity:

h � max
K2Th

hK ! 0; max
Th2fThg

max
K2Th

hK
qK

6C1: ð12Þ

Quasi-uniformity:

max
K2Th

hK

min
K2Th

hK
6C2 8Th 2 fThg: ð13Þ

For each K 2 Th, define P 2 LðHkþ1ðKÞ;HmðKÞÞ as

Pw ¼ ðP̂Pðw � F ÞÞ � F �1 8w 2 Hkþ1ðKÞ;

where P̂P is the interpolation operator defined in the master element K̂K. It follows from Lemma 3.3

that X
K2Th

jv� Pvj2m;K 6Ch2ðkþ1�mÞjvj2kþ1 8v 2 Hkþ1ðXÞ; 06m6 k: ð14Þ

3.2. Local error estimates

We now begin error estimation with defining the coordinate transformation. Assume that an affine

family fThg of triangulations in X are given so that there exists an invertible affine mapping F between the
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master element K̂K and each element K 2 Th. We also assume that the computational domain Xc and the

family fThcg of its triangulations are chosen such that

(i) For any triangulation Th on X, there exists a unique triangulation Thc 2 fThcg having the same connec-

tivity and the same number of elements of Th.
(ii) The family fThcg of triangulations in the computational domain is affine, regular, and quasi-uniform.

Note that we have not made any assumption on the regularity (such as quasi-uniformity) of the physical

triangulations. Indeed, avoiding such a restriction is generally necessary for meaningful analysis of mesh

adaptation. On the other hand, the regularity assumptions for fThcg are necessary for the convergence of
the polynomial approximation as the mesh is refined.

For an arbitrary element Kc 2 Thc , let G be the invertible affine mapping between K̂K and Kc. From Lemma

3.2 and the fact that hK̂K ¼ Oð1Þ and qK̂K ¼ Oð1Þ for the master element K̂K, the assumption (ii) implies

kG0k6Chc and kðG0Þ�1k6 C
hc

8Kc 2 Thc : ð15Þ

Assumption (i) warrants the existence of a one-to-one correspondence between the elements of Th and
their counterparts in Thc . Given an element K 2 Th, denote by Kc the corresponding element in Thc . The
restriction of n ¼ nðxÞ : X ! Xc on K can be defined as

njK ¼ G � F �1: ð16Þ

The relations among K̂K, K and Kc are illustrated in Fig. 1. (Note that the elements we consider are not

necessarily triangles as illustrated in the figure.)

Theorem 3.1. For given integers m and k : 06m6 k þ 1, let Hkþ1ðK̂KÞ and HmðK̂KÞ be two Sobolev spaces and
let P̂P 2 LðHkþ1ðK̂KÞ;HmðK̂KÞÞ be an operator such that

P̂Pp̂p ¼ p̂p 8p̂p 2 PkðK̂KÞ:

Then

jv� Pvjm;K 6Chkþ1�m
c kJ�1kmkJkkþ1 � jvjkþ1;K 8v 2 Hkþ1ðKÞ; ð17Þ

jv� Pvjm;K 6Chkþ1�m
c J�

1
2kJ�1km � jv � n�1jkþ1;Kc

8v 2 Hkþ1ðKÞ: ð18Þ

Fig. 1. The relations among the physical (K), computational (Kc), and master (K̂K) elements.
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Proof. From F ¼ n�1 � G and F �1 ¼ G�1 � n, (15) implies that

kF 0k6ChckJk; kðF 0Þ�1k6Ch�1
c kJ�1k: ð19Þ

Taking D ¼ K and D̂D ¼ K̂K in Lemmas 3.1 and 3.3, we get

jv� Pvjm;K 6CkðF 0Þ�1km � jdetðF 0Þj
1
2 � jv̂vjkþ1;K̂K : ð20Þ

Combining (20) with Lemma 3.1 and (19) leads to (17).

On the other hand, taking D ¼ Kc and D̂D ¼ K̂K in Lemma 3.1 we get

jv̂vjkþ1;K̂K 6CkG0kkþ1j detðG0Þj�
1
2jv̂v � G�1jkþ1;Kc

: ð21Þ

Combining (20) with (21) results in

jv� Pvjm;K 6CkðF 0Þ�1kmj detðF 0Þj
1
2kG0kkþ1j detðG0Þj�

1
2jv̂v � G�1jkþ1;Kc

: ð22Þ

Estimate (18) follows from (19), (22), detðF 0Þ ¼ detðJÞ detðG0Þ, and the fact that v̂v � G�1 ¼ v � F �
G�1 ¼ v � n�1. �

Remark 3.1. For simplicity, we confine ourselves in this paper to functions with the optimal regularity for

kth degree polynomial preserving operators, i.e., functions of Hkþ1ðKÞ. However, it is worth pointing out

that the strategy used here will also work for functions with lower regularity, e.g., those of HlðKÞ with
16 l6 k þ 1, although the convergence order of interpolation error will be reduced accordingly.

3.3. Global error estimates

We now proceed with global error estimation. For an arbitrary matrix A, it is not difficult to show

kAk6 kAkF ; kAk2F ¼ trðATAÞ; kA�1k2F ¼ AdjðAÞ
detðAÞ

����
����
2

F

6
C

detðAÞ2
kAk2ðn�1Þ

F : ð23Þ

Recalling that the mapping n ¼ nðxÞ is piecewise linear and the Jacobian matrix J is constant in each

element, from (17) we haveX
K

jv� Pvj2m;K 6Ch2ðkþ1�mÞ
c

X
K

kJ�1k2mF � kJk2ðkþ1Þ
F �

Z
K
kokþ1vk2F dx

6Ch2ðkþ1�mÞ
c

X
K

Z
K
kJ�1k2mF � kJk2ðkþ1Þ

F � kokþ1vk2F dx

6Ch2ðkþ1�mÞ
c

X
K

Z
K

1

J 2m
� kJk2ðkþ1Þþ2mðn�1Þ

F � kokþ1vk2F dx;

where o is the differential operator with respect to x. Thus,

X
K

jv� Pvj2m;K 6Ch2ðkþ1�mÞ
c

X
K

Z
k

1

J 2m
� trðJTJÞ
� �kþ1þmðn�1Þ � kokþ1vk2F dx: ð24Þ

Similarly, from (18) and (23) we get

X
K

jv� Pvj2m;K 6Ch2ðkþ1�mÞ
c

X
K

Z
k

1

J 2m
� trðJTJÞ
� �mðn�1Þ � kokþ1

n vk2F dx; ð25Þ
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where on denotes the differential operator with respect to n. Since okþ1
n v has a very complicated expression in

terms of derivatives with respect to x for large k, we consider here two simple but widely used cases,

piecewise constant interpolation (k ¼ 0) and piecewise linear interpolation (k ¼ 1).

For the case (k ¼ 0), the chain-rule gives

ov

oni
¼
X
j

ov
oxj

oxj
oni

¼ ðrvÞTai;

where ai ¼ ðoxÞ=ðoniÞ is a convariant base vector. Thus,

krnvk2F ¼
X
i

aTi rvðrvÞ
T
ai ¼ trðJTrvðrvÞTJÞ:

Substituting this into (25) yields

X
K

kv� Pvk2K 6Ch2c
X
K

Z
K
trðJTrvðrvÞTJÞdx: ð26Þ

For the case k ¼ 1, from the chain-rule and the fact that the mapping nðxÞ is piecewise linear, we have

o2v

ona
onb ¼

X
ij

o2v
oxioxj

oxioxj
ona

onb ¼ aTaHab; ko2nvk
2
F ¼

X
ij

ðaTi HajÞ2;

where H ¼ ððo2vÞ=ðoxioxjÞÞ is the Hessian matrix of v. Let the eigen-decomposition of H be

H ¼ Qdiagðl1; . . . ; lnÞQT:

Define

jH j ¼ Qdiagðjl1j; . . . ; jlnjÞQT:

It is easy to show

jaTi Hajj6 1
2
ðaTi jH jai þ aTj jH jajÞ:

Thus,

ko2nvk
2
F 6 n

X
i

aTi jH jai
� �2

6 n
X
i

aTi jH jai

 !2

¼ n trðJTjH jJÞ
� �2

: ð27Þ

From (25), we get

X
k

jv� Pvj2m;k 6Ch2ð2�mÞc

X
K

Z
K

1

J 2m
� trðJTJÞ
� �mðn�1Þ � trðJTjH jJÞ

� �2
dx ð28Þ

for m ¼ 0 or m ¼ 1.

The estimates (24), (26), and (28) have been obtained under the assumption that the mapping n ¼ nðxÞ is
piecewise linear. On one hand, this is true for most computations with the variational mesh adaptation. On

the other hand, we can hope that the estimates are asymptotically correct when the mapping is not

piecewise linear. For these reasons and especially the latter one, we will ignore the piecewise linearity re-
striction and use the estimates for any smooth coordinate transformation on any type of meshes.

To summarize, we have from (24) that, for some integers 06m6 k þ 1 and some kth polynomial pre-

serving operator P,
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jv� Pvj2mKCh2ðkþ1�mÞ
c B1½n� 8v 2 Hkþ1ðXÞ; ð29Þ

where K denotes ‘‘asymptotically less than or equal to’’ and

B1½n� ¼
Z

X

1

J 2m
trðJTJÞ
� �kþ1þmðn�1Þkokþ1vk2F dx: ð30Þ

For piecewise constant interpolation (k ¼ 0), (26) gives

kv� Pvk2 KCh2cB2½n� 8v 2 H 1ðXÞ; ð31Þ

where

B2½n� ¼
Z

X
trðJTrvðrvÞTJÞdx: ð32Þ

For piecewise linear interpolation (k ¼ 1), we have from (28) that, for m ¼ 0 or m ¼ 1,

jv� Pvj2mKCh2ð2�mÞc B3½n� 8v 2 H 2ðXÞ; ð33Þ

where

B3½n� ¼
Z

X

1

J 2m
� trðJTJÞ
� �mðn�1Þ

trðJTjH jJÞ
� �2

dx: ð34Þ

These error estimates may be used for mesh adaptation in various ways. The most straightforward

approach is to directly minimize the functional B1, B2, or B3. Unfortunately, there are several drawbacks

associated with this approach. First of all, functionals B1, B2, and B3 are non-convex and the existence of

their minimizers is unknown. Moreover, it is unclear whether or not their minimizers, if any, are non-

singular or at least satisfy some type of maximum principles. It is believed that the maximum principle

provides a mechanism to prevent the mapping from becoming singular. Furthermore, B1, B2, and B3 are

highly non-linear, no matter whether they are viewed as functionals of xðnÞ or nðxÞ. This can be seen more

clearly from, e.g., the forms

B2½x� ¼
Z

Xc

X
i

aTi rvðrvÞ
T
aiJ dn ð35Þ

with J ¼ a1 � ða2 � a3Þ and

B2½n� ¼
Z

X

X
i

1

ð1=JÞ2
ðaj � akÞTrvðrvÞTðaj � akÞdx ði; j; kÞ cyclic; ð36Þ

where ai ¼ rni is a contravariant base vector and the Jacobian has the relation 1=J ¼ a1 � ða2 � a3Þ. The
high degree of non-linearity makes it extremely difficult to find a minimizer numerically.

Due to these drawbacks, we will not use the direct minimization approach in this work. Instead, we

consider the variational approach described in the preceding section that attempts to equidistribute rather

than minimize a certain error bound. It is interesting though to point out that several researchers have used

the direct minimization approach in a local manner. For example, Bank and Smith [3] minimize an in-

terpolation or a posteriori error estimate for linear finite elements using a Gauss–Seidel-like iterative
method, in which sweeps are run through the vertices, locally optimizing the position of a single vertex

while all others being held fixed. A similar method has been used by Tourigny and Baines [27], Tourigny

and H€uulsemann [28], and Baines and Leary [2] for minimizing the L2 norm of the residual of partial

differential equations.
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4. Monitor functions

We define in this section the monitor function using the results obtained in the preceding section. Ac-

cording to (29), (31), and (33), we consider two types of monitor functions, scalar (Winslow�s type) and

non-scalar matrices. (Recall that a scalar matrix is the product of a scalar function with the identity matrix.)

Following common practice, we choose the monitor function to be symmetric and positive definite. (The

necessity of the positiveness for the non-singularity of the coordinate transformation can be easily seen

from the equidistribution criterion (8).) It is emphasized that we seek the coordinate transformation to
bound rather than minimize the functional B1, B2, or B3.

4.1. Winslow’s type of monitor functions

Consider the estimate (29). To define a positive definite G, we replace B1 with functional

~BB1½n� ¼
Z

X

1

J 2m
trðJTJÞ
� �kþ1þmðn�1Þ

a þ kokþ1vk2F
� �

dx

¼ a
Z

X

1

J 2m
trðJTJÞ
� �kþ1þmðn�1Þ

1

�
þ 1

a
kokþ1vk2F

�
dx; ð37Þ

where a > 0, often referred to as the adaptation intensity parameter, is to be determined. The introduction

of a provides a mechanism for better control of mesh concentration without damaging the convergence

order of estimate (29). The choice of this parameter has been discussed in [4] for the one-dimensional case

and [15] for the multi-dimensional case.

We choose the monitor function so that ~BB1 has the form

~BB1½n� ¼ a
Z

X

ffiffiffi
g

p

ðJ 2gÞm trðJTGJÞ
� �kþ1þmðn�1Þ

dx: ð38Þ

The motivation is that, during the course of error estimation, the regularity condition (see below) will take

care of the factor trðJTGJÞ while the equidistribution condition (also see below) takes care of the factor

J
ffiffiffi
g

p
. In the end, an estimate independent of the coordinate transformation can be obtained.

Comparing (38) with (37) and keeping in mind that G is defined as a scalar matrix, we obtain

G ¼ I 1
�

þ 1
a kokþ1vk2F

� 2
2ðkþ1�mÞþn ð39Þ

ffiffiffi
g

p ¼ 1
�

þ 1
a kokþ1vk2F

� n
2ðkþ1�mÞþn ð40Þ

We now proceed with estimating B1. Recall that functional (11) has been formulated so that its mini-

mization tends to make the eigenvalues of J�1G�1J�T to be equal and the function J
ffiffiffi
g

p
to be constant. It is

thus reasonable to assume that the coordinate transformation or mesh generated through the functional
I ½n� satisfies the (solution-dependent) regularity condition

trðJTGJÞ
n detðJTGJÞ

1
n

" #n
2

6Ciso 8x 2 X; ð41Þ
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and the equidistribution condition

J
ffiffiffi
g

p

r
6Cep 8x 2 X; ð42Þ

where Ciso and Cep are constants and r is defined in (9). One may notice that J
ffiffiffi
g

p
is required to be bounded

from above only (rather than to be close to one). Moreover, the form of (41) is chosen in order to be able to

replace trðJTGJÞ with J ffiffiffi
g

p
under the regularity condition.

Theorem 4.1. For some integers m and k: 06m6 k þ 1, assume that the coordinate transformation satisfies the
conditions (41) and (42) with the monitor function defined in (39). Then, the interpolation error is bounded by

jv� Pvj2mKCh2ðkþ1�mÞ
c

Z
X

a
�

þ kokþ1vk2F
� n

2ðkþ1�mÞþn
dx�

2ðkþ1�mÞþn
n

8v 2 Hkþ1ðXÞ;
"

ð43Þ

where C ¼ CðCiso;CepÞ is proportional to C2ðkþ1�mþmnÞ=n
iso C2ðkþ1�mÞ=n

ep .

Proof. From (37), we have

~BB1½n� ¼ a
Z

X

ffiffiffi
g

p

ðJ 2gÞm trðJTGJÞ
� �kþ1þmðn�1Þ

dx

6 aCC
2ðkþ1�mþmnÞ

n
iso

Z
X

ffiffiffi
g

p

ðJ 2gÞm detðJTGJÞ
� �ðkþ1þmðn�1ÞÞ

n dx ðusing ð41ÞÞ

¼ aCC
2ðkþ1�mþmnÞ

n
iso

Z
X

ffiffiffi
g

p
J 2g
� �ðkþ1�mÞ

n dx

6 aCC
2ðkþ1�mþmnÞ

n
iso C

2ðkþ1�mÞ
n

ep

Z
X

ffiffiffi
g

p
r

2ðkþ1�mÞ
n dx ðusing ð42ÞÞ

6 aCC
2ðkþ1�mþmnÞ

n
iso C

2ðkþ1�mÞ
n

ep r
2ðkþ1�mÞþn

n :

The conclusion follows from (9), (29), (40), and the fact that B1½n�6 ~BB1½n�. �

The theorem shows that the error bound depends continuously on Ciso and Cep. In the meantime, this
dependence is moderate in the sense that the powers of the constants, 2ðk þ 1� mþ mnÞ=n and

2ðk þ 1� mÞ=n, are small or moderate, especially when low degree interpolation polynomials are used (as is

in many practical computations).

4.1.1. Optimality of the monitor function

Generally speaking, it is difficult to make precise comparison of the bound (43) with the classic result

(14) on a uniform mesh. This is because the constant C in (43) depends on Ciso and Cep and can be con-

siderably different from that in (14). On the other hand, (43) has a smaller solution-dependent factor than

that given in (14), i.e.,Z
X

a
��

þ kokþ1vk2F
� n

2ðkþ1�mÞþn
dx

�2ðkþ1�mÞþn
n

6

Z
X

a
�

þ kokþ1vk2F
�
dx ð44Þ

and the right-hand side is comparable to jvj2kþ1 if a6
R

X kokþ1vk2F dx. When okþ1v is sufficiently smooth, the

two sides of (44) are comparable, and uniform and adaptive meshes having the same number of nodes will

produce similar results.However,when okþ1v is rough, the right-hand side of (44) canbecomemuch larger than
the left-hand side, and an adaptive mesh will produce much more accurate results than a uniform mesh does.
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Recall that the purpose of mesh adaptation is to obtain accurate resolution of rough functions. (In the

current circumstance, the roughness can be measured by the ratio of the right-hand side to the left-hand

side of (44) with a being set to be zero.) For the sake of simplicity, we assume hereafter that we are always

dealt with rough functions and thus consider only solution-dependent factors when comparing error

bounds or studying their optimality.

By construction, (39) leads to the smallest error bound (43). (In this sense, (39) is the optimal monitor

function.) To explain this, we consider as an example the widely used monitor function

G ¼ I 1

�
þ 1

a
jrvj2

�1
n

;
ffiffiffi
g

p ¼ 1

�
þ 1

a
jrvj2

�1
2

ð45Þ

that corresponds to the piecewise constant interpolation ðk;mÞ ¼ ð0; 0Þ. Under the conditions (41) and (42),
an error estimate can be obtained from (29) as

kv� Pvk2 KCh2c

Z
X

a
��

þ jrvj2
�1

2

dx

�2
n
Z

X
a
�

þ jrvj2
�n�1

n
dx: ð46Þ

On the other hand, for the case ðk;mÞ ¼ ð0; 0Þ estimate (43) reads as

kv� Pvk2 KCh2c

Z
X

a
��

þ jrvj2
� n

2þn
dx

�2þn
n

: ð47Þ

It is not difficult to show

Z
X

a
��

þ jrvj2
� n

2þn
dx

�2þn
n

6

Z
X

a
��

þ jrvj2
�1

2

dx

�2
n
Z

X
a
�

þ jrvj2
�n�1

n
dx

and thus (46) has a larger bound than that in (47).
It is interesting to note that the difference between bounds (47) and (46) for adaptive meshes is not as

great as the difference between bound (47) for an adaptive mesh and bound (14) for a uniform mesh. To see

this more clearly, (46) can be enlarged as

kv� Pvk2 KCh2c

Z
X

a
��

þ jrvj2
�n�1

n
dx

� n
n�1

: ð48Þ

Thus, the solution-dependent factors involved in the interpolation error bounds associated with the optimal

monitor function (39), the monitor function (45), and a uniform mesh are given, respectively, byZ
X

a
��

þ jrvj2
�1

2

dx

�2
;

Z
X

a
��

þ jrvj2
�1

2

dx

�2
;

Z
X
jrvj2 dx

for n ¼ 2 andZ
X

a
��

þ jrvj2
�3

5

dx

�5
3

;

Z
X

a
��

þ jrvj2
�2

3

dx

�3
2

;

Z
X
jrvj2 dx

for n ¼ 3. The above observation, together with the fact that the interpolation error bound depends

continuously on Ciso and Cep, indicates that estimate (43) is rather stable under perturbations to the optimal

mesh distribution resulting from the monitor function (39). This conclusion is consistent with the obser-

vations made by Babuska and Rheinboldt [1] and de Boor [10] for one-dimensional problems. The con-
clusion also explains why many existing methods have some degree of success although they may not

produce optimal adaptive meshes.
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4.1.2. Choice of the intensity parameter

The intensity parameter a should not be chosen either too small or too large. Too small a leads to an over-

concentrated and possibly very skewed mesh, whereas too large a results in a uniform mesh. The following

two guidelines can be used for the choice of a. The first is to make G invariant under the scaling transfor-

mation of v. In this way, a simple multiplication of v by a constant will not affect mesh concentration.

Moreover, a dimensionless G makes it easier and more efficient to find a minimizer of I ½n� numerically. The

other guideline is to have a sufficient number of mesh points concentrated in the region of large
ffiffiffi
g

p
. To this

end, we recall from (42) that
ffiffiffi
g

p
is proportional to the mesh density 1=J . Thus, ð

R
X

ffiffiffi
g

p
dx�

R
X dxÞ=

R
X

ffiffiffi
g

p
dx

is a good indicator of the percent of the mesh points concentrated in the region of large
ffiffiffi
g

p
. Define

X0 � xj
ffiffiffiffiffiffiffiffiffi
gðxÞ

pn
� 1
o
; X00 � X n X0 ¼ xj

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
� 1

n o
: ð49Þ

Then Z
X0
ð ffiffiffi
g

p � 1Þdx � 0;

Z
X0

ffiffiffi
g

p
dxþ

Z
X00

dx � jXj:

We haveR
Xð

ffiffiffi
g

p � 1ÞdxR
X

ffiffiffi
g

p
dx

¼
R

X0 ð ffiffiffi
g

p � 1Þdxþ
R

X00 ð ffiffiffi
g

p � 1ÞdxR
X0 ð ffiffiffi

g
p Þdxþ

R
X00 dxþ

R
X00 ð ffiffiffi

g
p � 1Þdx �

R
X00 ð ffiffiffi

g
p � 1Þdx

jXj þ
R

X00 ð ffiffiffi
g

p � 1Þdx

¼ 1

�
þ jXjR

X00 ð ffiffiffi
g

p � 1Þdx

��1

: ð50Þ

We choose a such thatZ
X00
ð ffiffiffi
g

p � 1Þdx � jXj; ð51Þ

i.e., about 50% of the mesh points are concentrated on X00.

From (40), X0 and X00 can be characterized as

X0 ¼ fx j kokþ1vk2F � ag and X00 ¼ fx j kokþ1vk2F � ag;

respectively. Thus,Z
X
00
ð ffiffiffi
g

p � 1Þdx �
Z

X
00

1

a
kokþ1vk2F

� � n
2ðkþ1�mÞþn

dx:

From (51), a should be defined such that

a
n

2ðkþ1�mÞþn � 1

jXj

Z
X
00
kokþ1vk

2n
2ðkþ1�mÞþn
F dx: ð52Þ

This suggests

a ¼ 1
jXj
R

X kokþ1vk
2n

2ðkþ1�mÞþn
F dx

� �2ðkþ1�mÞþn
n

ð53Þ

for the monitor function (39). It is easy to verify that with this definition of a, the monitor function G

and its determinant g are invariant under the scaling transformation of v. To see if (52) is true, from the

definitions of X0 and a we get
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1

jXj

Z
X0
kokþ1vk

2n
2ðkþ1�mÞþn
F dx � a

n
2ðkþ1�mÞþn ¼ 1

jXj

Z
X0
kokþ1vk

2n
2ðkþ1�mÞþn
F dxþ 1

jXj

Z
X
00
kokþ1vk

2n
2ðkþ1�mÞþn
F dx:

Thus,

1

jXj

Z
X0
kokþ1vk

2n
2ðkþ1�mÞþn
F dx � 1

jXj

Z
X
00
kokþ1vk

2n
2ðkþ1�mÞþn
F dx

and (52) holds.

It is interesting to point out the similarity between the definition of a (53) and the solution dependent

factor in (43). With (53), we can readily showZ
X

a
��

þ kokþ1vk2F
� n

2ðkþ1�mÞþn
dx

�2ðkþ1�mÞþn
n

6C
Z

X
kokþ1vk

2n
2ðkþ1�mÞþn
F dx

� �2ðkþ1�mÞþn
n

:

Thus, (43) can be written as

jv� Pvj2mKCh2ðkþ1�mÞ
c

Z
X
kokþ1vk

2n
2ðkþ1�mÞþn
F dx

� �2ðkþ1�mÞþn
n

8v 2 Hkþ1ðXÞ: ð54Þ

It is remarked that mesh concentration can be adjusted by modifying the definition of a, viz.,

a ¼ ð1� bÞ
bjXj

Z
X
kokþ1vk

2n
2ðkþ1�mÞþn
F dx

� �2ðkþ1�mÞþn
n

;

where b 2 ð0; 1Þ represents the percent of the mesh points concentrated in X00; see [15].

4.1.3. Regularity condition

Recall that ki�s are the eigenvalues of matrix J�1G�1J�T. Let li ¼ k�1, i ¼ 1; . . . ; n. Denote lmin ¼ mini li
and lmax ¼ maxi li. Then regularity condition (41) can be rewritten as

1

n

X
i

li6C
2
n
iso

Y
i

li

 !1
n

: ð55Þ

Lemma 4.1. Regularity condition (41) implies

lmin P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1ÞðC

2
n
iso � 1Þ

q�
þ 1

��2n

lmax:

Proof. From the refined version of the arithmetic-mean geometric-mean inequality (cf. (5)) we have

1

nðn� 1Þ
X
i<j

ð ffiffiffiffi
li

p � ffiffiffiffiffi
lj

p Þ2 6 1

n

X
i

li �
Y
i

li

 !1
n

:

The result of the lemma follows from (55) and that

C
2
n
iso � 1P

1

nðn� 1Þ �
P

i<jð
ffiffiffiffi
li

p � ffiffiffiffiffilj
p Þ2

ð
Q

i liÞ
1
n

P
1

nðn� 1Þ �
ð ffiffiffiffiffiffiffiffiffi

lmax

p � ffiffiffiffiffiffiffiffiffi
lmin

p Þ2

l
n�1
n
maxl

1
n
min

P
1

nðn� 1Þ
lmax

lmin

� � 1
2n

"
� lmin

lmax

� �n�1
2n

#2
P

1

nðn� 1Þ
lmax

lmin

� � 1
2n

"
� 1

#2
: �
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We recall that functional I ½n� in (11) is constructed based on the eigenvalues ki�s. It is thus natural to ask

if (41) implies that

trðJ�1G�1J�TÞ
n detðJ�1G�1J�TÞ

1
n
6 ~CCiso 8x 2 X

for some constant ~CCiso. In fact, from Lemma 4.1 it is not difficult to show that the above inequality holds

with

~CCiso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1ÞðC

2
n
iso � 1Þ

q�
þ 1

�2n
:

For the current situation, (41) is no more than the standard requirement for mesh regularity. Indeed, for

a scalar matrix G,

trðJTGJÞ
n detðJTGJÞ
� �1

n
¼ trðJTJÞ
n detðJTJÞ
� �1

n
:

Thus, according to this measure, an isotropic mesh satisfying (41) with Ciso ¼ 1 contains only equilateral

cells.

For convenience, we list in Table 1 the optimal monitor functions of Winslow�s type and their related
information for piecewise constant (k ¼ 0) and piecewise linear (k ¼ 1) interpolation. It is easy to see that

for each pair of (k;m), both G and
ffiffiffi
g

p
and therefore mesh concentration are dimension dependent (i.e. their

forms are different in different dimensions).

It is remarked that the one-dimensional version of monitor function (39) is basically the same as those

proposed by Carey and Dinh [7] (also see [8]). The only difference is that the current monitor function is

floored by the intensity parameter a.

4.2. Non-scalar matrix monitor functions

Non-scalar matrix monitor functions are considered only for the piecewise constant (k ¼ 0) and

piecewise linear (k ¼ 1) interpolation.

Table 1

Monitor functions of Winslow�s type for piecewise constant and piecewise linear interpolation

k m Dim G
ffiffiffi
g

p / 1=J Error order

0 0 1D ð1þ 1
ajv0j

2Þ2=3 ð1þ 1
ajv0j

2Þ1=3 OðhcÞ in k � k
2D Ið1þ 1

ajrvj
2Þ1=2 ð1þ 1

ajrvj
2Þ1=2

3D Ið1þ 1
ajrvj

2Þ2=5 ð1þ 1
ajrvj

2Þ3=5

1 0 1D ð1þ 1
ajv00j

2Þ2=5 ð1þ 1
ajv00j

2Þ1=5 Oðh2cÞ in k � k
2D Ið1þ 1

akHk2F Þ
1=3 ð1þ 1

akHk2F Þ
1=3

3D Ið1þ 1
akHk2F Þ

2=7 ð1þ 1
akHk2F Þ

3=7

1 1 1D ð1þ 1
ajv00j

2Þ2=3 ð1þ 1
ajv00j

2Þ1=3 OðhcÞ in j � j1
2D Ið1þ 1

akHk2F Þ
1=2 ð1þ 1

akHk2F Þ
1=2

3D Ið1þ 1
akHk2F Þ

2=5 ð1þ 1
akHk2F Þ

3=5

The definition of the intensity parameter a is given in (53).
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4.2.1. Piecewise constant interpolation

In this case we have ðk;mÞ ¼ ð0; 0Þ and the corresponding error estimate is given in (31). Introduce a new

functional as

~BB2½n� ¼ a
Z

X
tr JT I

��
þ 1

a
rvðrvÞT

�
J

�
dx: ð56Þ

The monitor function is defined such that ~BB2 can be written in the form

~BB2½n� ¼ a
Z

X

ffiffiffi
g

p
trðJTGJÞdx: ð57Þ

It is easy to get

G ¼ I
�

þ 1
arvrvT

�
� 1
�

þ 1
a jrvj

2
�� 1

nþ2 ð58Þ

and

ffiffiffi
g

p ¼ 1
�

þ 1
a jrvj

2
� 1
nþ2 ð59Þ

The intensity parameter is chosen as

a ¼ 1
jXj
R

X jrvj
2
nþ2 dx

h inþ2
ð60Þ

Theorem 4.2. Assume that the coordinate transformation satisfies the conditions (41) and (42) with the
monitor function defined in (58) and a defined in (60). Then, error for piecewise constant interpolation is
bounded by

kv� Pvk2 KCh2c

Z
X
jrvj

2
nþ2 dx

� �nþ2

8v 2 H 1ðXÞ; ð61Þ

where C ¼ CðCiso;CepÞ is proportional to ðCisoCepÞ
2
n.

We note that for the case ðk;mÞ ¼ ð0; 0Þ; the estimate (54) associated with a Winslow-type monitor

function reads as

kv� Pvk2 KCh2c

Z
X
jrvj

2n
nþ2 dx

� �nþ2
n

:

By comparing this with (61), we can see that a Winslow-type monitor function leads a larger bound than a
non-scalar matrix monitor function, provided that the resulting meshes satisfy the regularity and equi-

distribution conditions.

In the current situation, the mesh isotropy measure has a different geometric meaning from that using

Winslow-type monitor functions. Indeed, (41) reads as

trðJT I þ 1
arvrvT

� �
JÞ

n detðJT I þ 1
arvrvT

� �
JÞ

� �1
n
6C

2
n
iso: ð62Þ
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According to this measure, an isotropic mesh (with Ciso ¼ 1) is allowed to have non-equilateral cells.

The matrix monitor function based on gradient of v,

G ¼ I þ 1

a
rvrvT; ffiffiffi

g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

a
jrvj2

r
ð63Þ

has been used in the past because of its similarity to the one-dimensional arc-length monitor function. If we
choose the intensity parameter as

a ¼ 1

jXj

Z
X
jrvjdx

� �2
and assume that the resulting mesh satisfies (41) and (42), we can get

kv� Pvk2 KCh2c

Z
X
jrvjdx

� �2
; ð64Þ

which gives an error bound greater than that given in (61).

4.2.2. Piecewise linear interpolation

In this case we have k ¼ 1 and m ¼ 0 or 1. The corresponding error estimate is given in (33). The new

functional can be introduced as

~BB3½n� ¼ a2

Z
X

1

J 2m
� tr JTJ

� �� �mðn�1Þ
tr JT I

���
þ 1

a
jH j
�
J

��2
dx

¼ a2

Z
X

1

J
2m
n
� trðJTJÞ

J
2
n

� �mðn�1Þ

tr JT I
���

þ 1

a
jH j
�
J

��2
dx: ð65Þ

Rewriting it into the form

~BB3½n� ¼ a2

Z
X

ffiffiffi
g

p

ðJ 2gÞ
m
n

trðJTJÞ
J

2
n

� �mðn�1Þ

tr JTGJ
� �� �2

dx; ð66Þ

one can obtain

G ¼ I
�

þ 1
a jH j

�
� det I

�
þ 1

a jH j
� 2m�n
nðn�2mþ4Þ ð67Þ

and ffiffiffi
g

p ¼ det I
�

þ 1
a jH j

� 2
n�2mþ4 ð68Þ

The form of (66) suggests that the following new regularity assumption be used,

tr JTJ
� �
nJ

2
n

" #mðn�1Þ
2

tr JTGJ
� �

n det JTGJ
� �1

n

2
4

3
56C

2
n
iso: ð69Þ

This condition is different from (41) for m 6¼ 0. Like the case of piecewise constant interpolation, an iso-

tropic mesh satisfying the above condition with Ciso ¼ 1 will generally contain non-equilateral cells. For the

present case, a cannot be separated out from det ðI þ ð1=aÞjH jÞ without significantly enlarging the estimate.

For this reason, a is defined implicitly as

R
X det I

�
þ 1

a jH j
� 2
n�2mþ4 dx ¼ jXj � 21þmaxf 2n

n�2mþ4
�1;0g ð70Þ
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Note that the existence of a is guaranteed as long as
R

X trðjH jÞ½ �n=ðn�2mþ4Þ
dx > 0. The form of (70) is mo-

tivated by the discussion on the choice of a in Section 4.1.2, the desire that r �
R

X

ffiffiffi
g

p
dx is bounded by a

constant independent of v, and the following derivation of a bound of a. In fact, from (70) we have

2jXj6 2�maxf 2n
n�2mþ4

�1;0g
Z

X

1

n
tr I
��

þ 1

a
jH j
�� 2n

n�2mþ4

dx

6 2�maxf 2n
n�2mþ4

�1;0g
Z

X
1

�
þ 1

na
trðjH jÞ

� 2n
n�2mþ4

dx

6 jXj þ a� 2n
n�2mþ4

Z
X

1

n
trðjH jÞ

� � 2n
n�2mþ4

dx:

Thus,

a6
1

jXj

Z
X

1

n
trðjH jÞ

� � 2n
n�2mþ4

dx

" #n�2mþ4
2n

: ð71Þ

Theorem 4.3. For m ¼ 0 or m ¼ 1, assume that the coordinate transformation satisfies the conditions (69) and
(42) with the monitor function defined in (67) and a defined in (70). Then, the error for piecewise linear in-
terpolation is bounded by

jv� Pvj2mKCa2h2ð2�mÞc 8v 2 H 2ðXÞ; ð72Þ
where C ¼ CðCiso;CepÞ is proportional to C4=n

iso C
ð4�2mÞ=n
ep .

We now consider a non-optimal monitor function

G ¼ I þ 1

a
jH j; ffiffiffi

g
p ¼ det I

�
þ 1

a
jH j
�1

2

: ð73Þ

Assuming that the resultant mesh satisfies (69) and (42), we can obtain from (33) and (65)

jv� Pvj2mKCa2h2ð2�mÞc

Z
X
det I
�"

þ 1

a
jH j
�1

2

dx

#4�2m
n Z

X
det I
�

þ 1

a
jH j
�m=n

dx; ð74Þ

that can be shown to have a bound greater than or equal to that given in (72).

Table 2 lists the matrix monitor functions and related information for piecewise constant and piecewise

linear interpolation. Once again, G and
ffiffiffi
g

p
and therefore mesh concentration are dimension dependent.

Table 2

The non-scalar matrix monitor functions for piecewise constant and linear interpolation

k m Dim G
ffiffiffi
g

p / 1=J Error order

0 0 1D ð1þ 1
ajv0j

2Þ2=3 ð1þ 1
ajv0j

2Þ1=3 OðhcÞ in k � k
2D I þ 1

arvðrvÞ
T

� �
1þ 1

ajrvj
2

� ��1=4

1þ 1
a jrvj

2
� �1=4

3D I þ 1
arvðrvÞ

T
� �

1þ 1
ajrvj

2
� ��1=5

1þ 1
a jrvj

2
� �1=5

1 0 1D ð1þ 1
ajv00jÞ

4=5 ð1þ 1
ajv00jÞ

2=5
Oðh2cÞ in k � k

2D I þ 1
ajH j

� �
det I þ 1

ajH j
� ��1=6

det I þ 1
ajH j

� �1=3
3D I þ 1

ajH j
� �

det I þ 1
ajH j

� ��1=7
det I þ 1

ajH j
� �2=7

1 1 1D ð1þ 1
a jv00jÞ

4=3 ð1þ 1
ajv00jÞ

2=3
OðhcÞ in j � j1

2D I þ 1
ajH j

� �
det I þ 1

ajH j
� �1=2

3D I þ 1
ajH j

� �
det I þ 1

ajH j
� ��1=15

det I þ 1
ajH j

� �2=5
The intensity parameter a is defined in (70).
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5. Numerical experiments

We present in this section two-dimensional numerical results obtained for three examples. Having the

roles of dependent and independent variables been interchanged, the two-dimensional Euler–Lagrange

equation of functional I ½n� defined in (11) reads as [16]

h a11
o2x

on2

�
þ 2a12

o2x

onog
þ a22

o2x

og2
þ a1

ox

on
þ a2

ox

og

�

þ hðq� 1Þ
b

B11

o2x

on2

�
þ 2B12

o2x

onog
þ B22

o2x

og2
þ b1

ox

on
þ b2

ox

og

�

þ
ð1� 2hÞðq� 1Þ2q ffiffiffi

g
p

bq�1ðGJ ffiffiffi
g

p Þq
C11

o2x

on2

�
þ 2C12

o2x

onog
þ C22

o2x

og2
þ c1

ox

on
þ c2

ox

og

�
¼ 0; ð75Þ

where x ¼ ðx; yÞT and n ¼ ðn; gÞT are the physical and computational variables, �GG ¼ G=g1=ð2qÞ, b ¼ ða1ÞT
�GG�1a1 þ ða2ÞT �GG�1a2, J ¼ xnyg � xgyn, and

a1 ¼
xn

yn

� �
; a2 ¼

xg

yg

� �
; a1 ¼ 1

J
yg
�xg

� �
; a2 ¼ 1

J
�yn
xn

� �
:

The coefficients are given by

a11 ¼ ða1ÞT �GG�1a1; a12 ¼ ða1ÞT �GG�1a2; a22 ¼ ða2ÞT �GG�1a2;

a1 ¼ �ða1ÞT o
�GG�1

on
a1 � ða1ÞT o

�GG�1

og
a2; a2 ¼ �ða2ÞT o

�GG�1

on
a1 � ða2ÞT o

�GG�1

og
a2;

B11 ¼ 2 �GG�1a1
� �

�GG�1a1
� �T

a1ða1ÞT
�

þ a1ða1ÞT
�
;

B12 ¼ �GG�1a1
� �

�GG�1a2
� �T�

þ �GG�1a2
� �

�GG�1a1
� �T�

a1ða1ÞT
�

þ a1ða1ÞT
�
;

B22 ¼ 2 �GG�1a2
� �

�GG�1a2
� �T

a1ða1ÞT
�

þ a1ða1ÞT
�
;

b1 ¼ �ða1ÞT �GG�1a1 ða1ÞT o
�GG�1

on
a1

"
þ ða2ÞT o

�GG�1

on
a2

#

� ða1ÞT �GG�1a2 ða1ÞT o
�GG�1

og
a1

"
þ ða2ÞT o

�GG�1

og
a2

#
;

b2 ¼ �ða2ÞT �GG�1a1 ða1ÞT o
�GG�1

on
a1

"
þ ða2ÞT o

�GG�1

on
a2

#

� ða2ÞT �GG�1a2 ða1ÞT o
�GG�1

og
a1

"
þ ða2ÞT o

�GG�1

og
a2

#
;

C11 ¼ a1ða1ÞT; C12 ¼
1

2
a1ða2ÞT
�

þ a2ða1ÞT
�
; C22 ¼ a2ða2ÞT;

c1 ¼
o lnð ffiffiffi

g
p Þ

on
; c2 ¼

o lnð ffiffiffi
g

p Þ
og

:

ð76Þ
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Note that the terms in the second square bracket in (75) result from the non-quadratic nature of the

functional and those in the third bracket from the equidistribution. In our computations, Xc is chosen to be

the unit square and the computational mesh is a rectangular mesh. (75) is discretized using central finite

differences and solved iteratively with under-relaxation and with the coefficients being calculated at the

previous iterate. The linear algebraic system is solved using a preconditioned conjugate gradient method.

The converged mesh is obtained when the root-mean-square norm of the residual is less than 10�3. All

computations start with a uniform mesh and use a fixed and uniform distribution of boundary points. To

show a clear picture of how the variational method works, no smoothing is used for the monitor function.
But it should be pointed out that in practice, application of a few sweeps of a low pass filter to the monitor

function produces smoother meshes and often leads to more accurate results.

In the presented results, e0 and e1 denote the error functions for piecewise constant and linear inter-

polation, respectively. Ciso is defined as

Ciso � max
ðx;yÞ2X

trðJTGJÞ
2 detðJTGJÞ
� �1

2

ð77Þ

for the cases of Winslow-type monitor functions and non-scalar matrix G with k ¼ 0 (piecewise constant

interpolation) and

Ciso � max
ðx;yÞ2X

trðJTJÞ
2J

� �m
2

� trðJTGJÞ
2 det JTGJ

� �1
2

ð78Þ

for the case of non-scalar matrix G with k ¼ 1 (piecewise linear interpolation). Cep is defined as

Cep � max
ðx;yÞ2X

J
ffiffiffi
g

p

r
; ð79Þ

where r is defined in (9).

Example 1. Our first example is to generate adaptive meshes for

vðx; yÞ ¼ tanh ð100ððx� 1=2Þ2 þ ðy � 1=2Þ2 � 1=16ÞÞ ðx; yÞ 2 X � ð0; 1Þ � ð0; 1Þ: ð80Þ

Some typical converged adaptive meshes are plotted in Fig. 2. It can be seen that mesh points are con-

centrated in the correct regions. There is no significant difference between the results using scalar and non-

scalar matrix monitor functions for all but the case of piecewise constant interpolation with a non-scalar

matrix monitor function.

We list in Table 3 the results obtained using the variational method (h ¼ 0:1 or 0.5) described in Section

2 with optimal monitor functions for piecewise constant and piecewise linear interpolation. They confirm

the theoretical prediction on the convergence order. Specifically, the L2 norm of the error of piecewise

constant interpolation ke0k and the H 1 semi-norm of the error of piecewise linear interpolation
je1j1 ¼ kre1k converges linearly whereas the L2 norm of the error of piecewise linear interpolation ke1k has

quadratic convergence. For all but the case of piecewise constant interpolation k ¼ 0 with non-scalar

matrix G, we have Ciso < 3 and Cep < 4. This shows that the method described in Section 2 is able to

generate meshes that satisfy the regularity and the equidistribution conditions (41) and (42) with relatively

small constants Ciso and Cep.

The results for the case of piecewise constant interpolation (k ¼ 0) with a non-scalar matrix monitor

function can be explained as follows. For this case, if a is not sufficiently large (and this seems to be the case

in our computations),
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Fig. 2. Converged adaptive meshes of size 81� 81 for Example 1 are obtained using the variational method ðh ¼ 0:1Þ with optimal

monitor functions defined for piecewise constant interpolation ðk;mÞ ¼ ð0; 0Þ and piecewise linear interpolation ðk;mÞ ¼ ð1; 0Þ and

ð1; 1Þ. The left column corresponds to Winslow-type monitor functions while the right column corresponds to non-scalar matrix ones.

Rows 1, 2, and 3 correspond to the cases ðk;mÞ ¼ ð0; 0Þ; ð1; 0Þ; and ð1; 1Þ, respectively.
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tr I
�

þ 1

a
rvrvT

�
¼ 2

�
þ 1

a
jrvj2

�
� 2 1

�
þ 1

a
jrvj2

�1
2

¼ 2 det I
��

þ 1

a
rvrvT

��1
2

:

This indicates that G is highly anisotropic. As a result, both conditions (41) and (42) are difficult to be

satisfied by a mesh with small constants Ciso and Cep. To reduce the anisotropic feature of G, we can use a

larger a. For instance, we take

a ¼ 1

jXj

Z
X
jrvjdx

� �2
; ð81Þ

the intensity parameter (53) defined for the Winslow-type monitor function (k ¼ m ¼ 0 and n ¼ 2). The new

results are listed in Table 5. It can be seen that both Ciso and Cep have now much smaller values. For

comparison purpose, we plot in Fig. 3 converged meshes obtained with a defined in (60) and (81).

Table 3

Interpolation error on adaptive meshes obtained for Example 1 using the variational method (h ¼ 0:1 or 0.5) with optimal scalar and

non-scalar matrix monitor functions for ðk;mÞ ¼ ð0; 0Þ, (1,0), and (1,1)

h Jmax Winslow-type G Non-scalar matrix G

ke0k ke0k1 Ciso Cep ke0k ke0k1 Ciso Cep

ðk;mÞ ¼ ð0; 0Þ: Piecewise constant interpolation

0.5 21 7.63e) 2 9.59e) 1 1.16 2.71 6.39e) 2 1.10e00 5.86 3.90

41 3.30e) 2 4.15e) 1 1.29 3.23 2.77e) 2 5.01e) 1 9.80 5.77

81 1.53e) 2 1.93e) 1 1.38 3.30 1.48e) 2 2.44e) 1 11.4 10.1

161 7.36e) 2 9.30e) 2 1.42 3.23 8.08e) 3 1.23e) 1 10.9 19.8

0.1 21 4.63e) 2 6.00e) 1 1.71 1.74 5.31e) 2 7.61e) 1 7.65 1.79

41 2.05e) 2 2.49e) 1 1.96 1.69 2.21e) 2 3.56e) 1 13.7 2.05

81 9.76e) 3 1.08e) 1 2.14 1.61 1.05e) 2 1.61e) 1 14.5 2.83

161 4.74e) 3 5.16e) 2 2.26 1.51 5.19e) 3 7.61e) 2 13.8 4.15

ke1k ke1k1 Ciso Cep ke1k ke1k1 Ciso Cep

ðk;mÞ ¼ ð0; 1Þ: Piecewise linear interpolation

0.5 21 5.88e) 2 4.63e) 1 1.04 1.74 3.90e) 2 3.63e) 1 1.38 2.30

41 1.08e) 2 1.16e) 1 1.19 2.40 8.74e) 3 1.04e) 1 1.42 2.85

81 2.22e) 3 2.13e) 2 1.26 2.66 1.86e) 3 2.53e) 2 1.73 3.36

161 5.05e) 4 4.49e) 3 1.28 2.51 3.74e) 4 1.13e) 2 1.63 3.52

0.1 21 3.21e) 2 3.93e) 1 1.39 1.41 2.49e) 2 2.46e) 1 1.74 1.43

41 5.21e) 3 5.83e) 2 1.75 1.66 4.58e) 3 3.90e) 2 2.58 1.44

81 1.18e) 3 9.40e) 3 1.82 1.46 1.08e) 3 9.34e) 3 2.28 1.35

161 2.90e) 4 2.80e) 3 1.91 1.34 2.66e) 4 2.85e) 3 2.69 1.29

kre1k ke1k1 Ciso Cep kre1k ke1k1 Ciso Cep

ðk;mÞ ¼ ð1; 1Þ: Piecewise linear interpolation

0.5 21 5.06 4.52e) 1 1.06 2.02 5.55 4.41e) 1 1.23 2.58

41 2.16 1.14e) 1 1.25 2.89 2.00 9.95e) 2 1.41 2.88

81 0.96 2.26e) 2 1.35 3.36 0.78 2.54e) 2 1.47 3.06

161 0.45 4.20e) 3 1.36 2.87 0.35 4.36e) 3 1.44 2.81

0.1 21 3.37 3.08e) 1 1.74 1.65 3.18 2.69e) 1 1.55 1.51

41 1.38 6.42e) 2 2.24 2.24 1.32 4.00e) 2 1.82 1.49

81 0.67 1.49e) 2 2.10 1.82 0.63 1.10e) 2 2.05 1.36

161 0.33 4.48e) 3 2.12 1.49 0.31 2.69e) 3 2.39 1.26
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It is interesting to note that scalar and non-scalar matrix monitor functions lead to very comparable

results for this example, although generally speaking, the latter produces slightly greater Ciso and Cep. Like

in [16], the smaller h is, the larger Ciso and the smaller Cep.

Numerical results obtained on uniform meshes are listed in Table 4. For comparison purpose, the results

for the maximum error are also listed. We can see that an adaptive mesh leads to more accurate results than

a uniform mesh with the same number of points. The difference is significant, especially in the maximum

error.

Table 5

Interpolation error for Example 1 on adaptive meshes obtained using the variational method (h ¼ 0:1 or 0.5) with larger a (81) and a

non-scalar matrix monitor function for piecewise constant interpolation

h Jmax ke0k ke0k1 Ciso Cep

0.5 21 6.67e) 2 9.90e) 1 1.90 2.08

41 2.77e) 2 3.99e) 1 1.99 2.70

81 1.30e) 2 1.74e) 1 1.72 3.94

161 6.22e) 3 8.05e) 2 1.51 5.34

0.1 21 7.08e) 2 9.12e) 1 2.57 1.36

41 2.99e) 2 3.81e) 1 2.93 1.31

81 1.38e) 2 1.72e) 1 2.93 1.31

161 6.63e) 3 8.15e) 2 2.88 1.30

Fig. 3. Converged adaptive meshes for Example 1 are obtained using the variational method ðh ¼ 0:1Þ with the non-scalar matrix

monitor function (58) based on function gradient. The difference in adaptive meshes is shown for different definitions of a; (a) with (60)

and (b) with (81).

Table 4

Interpolation error is obtained on uniform meshes for Example 1

Jmax Piecewise constant interpolation Piecewise linear interpolation

ke0k ke0k1 ke1k rke1k ke1k1
21 1.21e) 1 1.46e00 8.143) 2 6.11 5.08e) 1

41 6.39e) 2 8.58e) 1 2.48e) 2 3.60 2.45e) 1

81 3.23e) 2 4.58e) 1 6.60e) 3 1.89 7.32e) 2

161 1.62e) 2 2.32e) 1 1.69e) 3 0.96 1.92e) 2
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Finally, we note that in two dimensions, traditional monitor functions are different from the optimal

monitor functions only for two cases with non-scalar matrix monitor functions, ðk;mÞ ¼ ð0; 0Þ and

ðk;mÞ ¼ ð1; 0Þ. The numerical results obtained for these cases with both traditional and optimalG are listed in

Table 6. One can see that the traditional G defined in (63) leads to slightly better results than those with the

optimalG (58). It is emphasized again that, as discussed in Section 4.1.1, an optimalmonitor function does not

necessarily produce the smallest error because the constant C in the error bound depends on the values of

several other constants, including Ciso and Cep that measure how close conditions (41) and (42) are satisfied.

Example 2. The second example is to generate adaptive meshes for a given analytical solution

vðx; yÞ ¼ tanh 30 x2
��

þ y2 � 1

8

��
þ tanh 30 ðx

��
� 0:5Þ2 þ ðx� 0:5Þ2 � 1

8

��

þ tanh 30 ðx
��

� 0:5Þ2 þ ðxþ 0:5Þ2 � 1

8

��
þ tanh 30 ðx

��
þ 0:5Þ2 þ ðx� 0:5Þ2 � 1

8

��

þ tanh 30 ðx
��

þ 0:5Þ2 þ ðxþ 0:5Þ2 � 1

8

��
ð82Þ

defined in ½�2; 2� � ½�2; 2�. This example is more difficult than Example 1 since the mesh points have to be

concentrated to a more complicated region – the union of five circles.

Typical adaptive meshes obtained with scalar and non-scalar matrix monitor functions are plotted in

Fig. 4. Once again, there is no significant difference between the results obtained with scalar and non-scalar

matrix G, except for the case of piecewise constant interpolation with a non-scalar matrix G. For this case,
the mesh lines are not aligned with tangential directions at the intersection of any two circles, such as

ðx; yÞ ¼ ð�0:25;�0:25Þ. In the neighborhood of this point, we have

vx � 60ð2xþ 0:5Þ � 0; vy � 60ð2y þ 0:5Þ � 0

and

G ¼ I þ 1ð1=aÞrvðrvÞT � I :

Table 6

Comparison of traditional and optimal non-scalar monitor functions for the cases ðk;mÞ ¼ 0 and ðk;mÞ ¼ ð1; 0Þ
Jmax Traditional G Optimal G

(63) for G, (81) for a (58) for G, (60) for a

ke0k ke0k1 Ciso Cep ke0k ke0k1 Ciso Cep

ðk;mÞ ¼ ð0; 0Þ
21 4.39e) 2 5.92e) 1 2.18 1.64 5.31e) 2 7.61e) 1 7.65 1.79

41 1.91e) 2 2.36e) 1 2.20 1.44 2.21e) 2 3.56e) 1 13.7 2.05

81 8.90e) 3 9.57e) 2 2.23 1.36 1.05e) 2 1.61e) 1 14.5 2.83

161 4.48e) 3 4.72e) 2 2.23 1.39 5.19e) 3 7.61e) 2 13.8 4.15

(73) for G, (70) for a (67) for G, (70) for a

ke1k ke1k1 Ciso Cep ke1k ke1k1 Ciso Cep

ðk;mÞ ¼ ð1; 0Þ
21 1.84e) 2 1.79e) 1 2.07 1.78 2.49e) 2 2.46e) 1 1.74 1.43

41 3.90e) 3 3.92e) 2 2.48 1.62 4.58e) 3 3.90e) 2 2.58 1.44

81 1.18e) 3 1.22e) 2 3.53 1.88 1.083) 3 9.34e) 3 2.28 1.35

161 3.86e) 4 3.98e) 3 5.84 2.67 2.66e) 4 2.85e) 3 2.69 1.29

Interpolation error is shown for Example 1 on adaptive meshes obtained using the variational method (h ¼ 0:1).
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Fig. 4. Converged adaptive meshes of size 81� 81 for Example 2 are obtained using the variational method ðh ¼ 0:1Þ with optimal

monitor functions defined for piecewise constant interpolation ðk;mÞ ¼ ð0; 0Þ and piecewise linear interpolation ðk;mÞ ¼ ð1; 0Þ and

ð1; 1Þ. The left column corresponds to Winslow-type monitor functions while the right column corresponds to non-scalar matrix ones.

Rows 1, 2, and 3 correspond to the cases ðk;mÞ ¼ ð0; 0Þ; ð1; 0Þ; and ð1; 1Þ, respectively.
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Thus, the mesh tends to be rectangular around this point.

The other results are listed in Table 7. The corresponding results obtained with uniform meshes are listed

in Table 8. They confirm the observations made for Example 1.

Example 3. The last example is the numerical solution of the boundary value problem of a convection

dominated elliptic equation

R
ou
ox

¼ o2u
ox2

þ o2u
oy2

þ x2 1� eRðx�1Þ
� �

sinðxyÞ 0 < x; y < 1 ð83Þ

subject to Dirichlet boundary conditions that are chosen such that the exact solution is given

uðx; yÞ ¼ 1� eRðx�1Þ
� �

sinðxyÞ:

R and x are taken as R ¼ 35 and x ¼ 1:5p. This example has been used by several researchers, e.g. [11], to

demonstrate the efficiency of adaptive mesh methods.

Table 7

Interpolation error on adaptive meshes obtained for Example 2 (R ¼ 30) using the variational method (h ¼ 0:1) with optimal scalar

and non-scalar matrix monitor functions for ðk;mÞ ¼ ð0; 0Þ, (1,0), and (1,1)

Jmax Winslow-type G Non-scalar matrix G

ke0k ke0k1 Ciso Cep ke0k ke0k1 Ciso Cep

ðk;mÞ ¼ ð0; 0Þ: Piecewise constant interpolation

21 4.23e) 1 1.52e00 1.36 1.83 4.99e) 1 1.69e00 9.03 2.34

41 1.61e) 1 9.30e) 1 2.13 1.81 2.12e) 1 1.03e00 20.3 2.71

81 7.41e) 2 4.77e) 1 2.92 1.66 9.18e) 2 7.88e) 1 57.5 4.29

161 3.58e) 2 2.12e) 1 3.98 1.55 4.51e) 2 2.64e) 1 48.7 5.77

ke1k ke1k1 Ciso Cep ke1k ke1k1 Ciso Cep

ðk;mÞ ¼ ð1; 0Þ: Piecewise linear interpolation

21 4.27e) 1 8.66e) 1 1.20 1.25 4.21e) 1 8.63e) 1 2.35 1.41

41 8.31e) 2 2.58e) 1 1.46 1.49 7.29e) 2 2.74e) 1 2.21 1.71

81 1.77e) 2 1.22e) 1 2.06 1.66 1.49e) 2 6.33e) 2 3.13 1.57

161 4.32e) 3 3.13e) 2 2.40 1.46 3.46e) 3 1.20e) 2 3.69 1.56

kre1k ke1k1 Ciso Cep kre1k ke1k1 Ciso Cep

ðk;mÞ ¼ ð1; 1Þ: Piecewise linear interpolation

21 11.1 7.98e) 1 1.33 1.40 11.5 7.17e) 1 1.82 1.42

41 5.30 3.20e) 1 1.64 1.91 4.75 2.89e) 1 2.29 1.85

81 3.04 2.06e) 1 2.61 2.26 2.24 1.02e) 1 4.28 1.77

161 1.62 5.63e) 2 3.20 1.69 1.07 1.64e) 2 3.92 2.52

Table 8

Interpolation error is obtained on uniform meshes for Example 2 (R ¼ 30)

Jmax Piecewise constant interpolation Piecewise linear interpolation

ke0k ke0k1 ke1k kre1k ke1k1
21 7.08e) 1 1.79e00 5.82e) 1 12.6 9.04e) 1

41 4.04e) 1 1.31e00 1.91e) 1 7.83 7.31e) 1

81 1.99e) 1 7.53e) 1 7.06e) 2 5.09 3.08e) 1

161 1.00e) 1 3.91e) 1 1.85e) 2 2.64 9.12e) 2
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The differential equation is first transformed into the computational domain and discretized on a uni-

form computational mesh using central finite differences. The resultant system consisting of the physical

and mesh equations is solved alternately for the physical solution and the adaptive mesh. The convergent

results are obtained when the difference in the physical solution at two consecutive iterates is small. For this

problem, the physical solution has a sharp boundary layer at x ¼ 1. Since a uniform distribution of

boundary points cannot lead to accurate solutions, we use a non-uniform one that is generated using the

one-dimensional mesh equation (i.e. the Euler–Lagrange equation of the 1D version of I ½n�), see e.g. [15] for
detail. e0 and e1 denote the error functions for the piecewise constant and linear interpolation of the
computed solution, respectively. (The interpolation polynomials are computed in the same manner as in the

previous two examples but with the nodal function values being replaced by the computed solution values.)

Table 9

(Example 3) Solution error on adaptive meshes obtained with the variational method (h ¼ 0:1) using scalar and non-scalar matrix

monitor functions

Jmax Winslow-type G Non-scalar matrix G

ke0k (ratio) ke0k1 (ratio) ke0k (ratio) ke0k1 (ratio)

G is calculated with ðk;mÞ ¼ ð0; 0Þ
17 5.53e) 2 4.83e) 1 5.53e) 2 3.69e) 1

33 2.63e) 2 (2.1) 2.43e) 1 (2.0) 2.70e) 2 (2.0) 1.88e) 1 (2.0)

65 1.30e) 2 (2.0) 1.21e) 1 (2.0) 1.34e) 2 (2.0) 9.61e) 2 (2.0)

129 6.47e) 3 (2.0) 6.11e) 2 (2.0) 6.73e) 3 (2.0) 4.79e) 2 (2.0)

ke1k (ratio) ke1k1 (ratio) ke1k (ratio) ke1k1 (ratio)

G is calculated with ðk;mÞ ¼ ð1; 0Þ
17 1.01e) 2 1.62e) 1 9.66e) 3 1.10e) 1

33 1.89e) 3 (5.3) 4.84e) 2 (3.3) 1.71e) 3 (5.6) 2.83e) 2 (3.9)

65 4.21e) 4 (4.5) 1.31e) 2 (3.7) 3.68e) 4 (4.6) 7.32e) 3 (3.9)

129 1.02e) 4 (4.1) 3.74e) 3 (3.5) 1.05e) 4 (3.5) 2.88e) 3 (2.5)

kre1k (ratio) ke1k1 (ratio) kre1k (ratio) ke1k1 (ratio)

G is calculated with ðk;mÞ ¼ ð1; 1Þ
17 8.68e) 1 1.34e) 1 1.00e00 9.86e) 2

33 3.90e) 1 (2.2) 3.81e) 2 (3.5) 3.86e) 1 (2.6) 2.54e) 2 (3.9)

65 1.85e) 1 (2.1) 9.82e) 3 (3.9) 1.63e) 1 (2.4) 5.77e) 3 (4.4)

129 9.43e) 2 (2.0) 2.81e) 3 (3.5) 7.69e) 2 (2.1) 1.38e) 3 (4.2)

e0 and e1 denote the error functions for the piecewise constant and piecewise linear interpolation of the computed solution,

respectively. (That is, the interpolation polynomials are computed based on the nodal values of the computed solution.)

Table 10

(Example 3) Solution error on uniform meshes, e0 and e1 denote the error functions for the piecewise constant and piecewise linear

interpolation of the computed solution, respectively. (That is, the interpolation polynomials are computed based on the nodal values of

the computed solution.)

Jmax Piecewise constant interpolation Piecewise linear interpolation

ke0k (ratio) ke0k1 (ratio) ke1k (ratio) kre1k (ratio) ke1k1 (ratio)

17 6.81e) 2 6.86e) 1 2.52e) 2 1.78e00 2.28e) 1

33 3.47e) 2 (2.0) 4.70e) 1 (1.5) 6.85e) 3 (3.7) 9.66e) 1 (1.8) 8.94e) 2 (2.6)

65 1.75e) 2 (2.0) 2.86e) 1 (1.6) 1.75e) 3 (3.9) 4.94e) 1 (2.0) 2.86e) 2 (3.1)

129 8.74e) 3 (2.0) 1.60e) 1 (1.8) 4.39e) 4 (4.0) 2.49e) 1 (2.0) 8.16e) 3 (3.5)
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Fig. 5. Converged adaptive meshes of size 33� 33 for Example 3 are obtained using the variational method ðh ¼ 0:1Þ with optimal

monitor functions defined for piecewise constant interpolation ðk;mÞ ¼ ð0; 0Þ and piecewise linear interpolation ðk;mÞ ¼ ð1; 0Þ and

ð1; 1Þ. The left column corresponds to Winslow-type monitor functions while the right column corresponds to non-scalar matrix ones.

Rows 1, 2, and 3 correspond to the cases ðk;mÞ ¼ ð0; 0Þ; ð1; 0Þ; and ð1; 1Þ, respectively.

646 W. Huang, W. Sun / Journal of Computational Physics 184 (2003) 619–648



Note that both ke0k1 and ke1k1 are different from (and in fact greater than) the nodal maximum error of

the solution.

The numerical results obtained on adaptive and uniform meshes are listed in Tables 9 and 10, respec-

tively. Overall, the non-scalar matrix monitor functions lead to slightly better results than those of Win-

slow�s type. Once again, the results confirm the theoretical prediction on convergence, namely, ke0k ¼OðhcÞ,
ke1k ¼ Oðh2cÞ, and kre1k ¼ OðhcÞ, where hc ¼ 1=GJmax ¼ 1=Kmax. Finally, typical adaptive meshes are

shown in Fig. 5.

6. Conclusions

In the previous sections we have developed several (asymptotic) interpolation error estimates in terms of

a general coordinate transformation between the physical and computational domains. Both scalar

(Window�s type) and non-scalar matrix monitor functions are defined based on these estimates for the

variational mesh adaptation method developed in [16]. These monitor functions are optimal in the sense

that they lead to the smallest physical-solution-dependent factor in error bounds. The choice of the in-
tensity parameter is also given for each monitor function.

The regularity and equidistribution conditions (41) (or (69)) and (42) play a crucial role in the devel-

opment. They formulate the approximate satisfaction of the isotropic and equidistribution criteria used in

[16] for designing the mesh adaptation functional. They can be used as measures for mesh regularity and

adaptation. Indeed, a mesh that satisfies (41) with a Window-type monitor function and Ciso ¼ 1 will

consist of only equilateral cells. For a non-scalar matrix monitor, the mesh regularity can be better un-

derstood in a Riemannian space having the monitor function as its metric tensor. An isotropic mesh in this

space can have skewed cells in the physical domain.
Under the regularity and equidistribution conditions we have obtained asymptotic interpolation error

bounds on adaptive meshes. It is shown that these bounds are generally much smaller than those obtained

on a uniform mesh for rough functions. Similar interpolation error bounds are also obtained for several

traditional monitor functions. Most of them are not optimal. However, the difference in the interpolation

error on adaptive meshes obtained with optimal and non-optimal monitor functions are not as great as that

on adaptive meshes and uniform meshes. This observation, together with continuous dependence of error

bounds on Ciso and Cep (see (41) and (42)), indicates that the optimal error bounds are rather stable to

perturbations of the optimal meshes. This is consistent with the observations made by Babuska and
Rheinboldt [1] and de Boor [10] for one-dimensional problems. Moreover, a non-optimal monitor function

can lead to reasonably accurate results as long as it stays to some extent close to the optimal one. This may

explain why many existing methods can have a certain degree of success even though they do not produce

an optimal adaptive mesh.

We have presented two-dimensional numerical results obtained using the method of [16] with the

monitor functions developed in Section 4 for three examples. The results show that the method is able to

produce adaptive meshes that satisfy the regularity and equidistribution conditions. The theoretical pre-

diction on convergence orders are verified by the numerical results.
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