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Abstract

The key to the success of a variational mesh adaptation method is to define a proper monitor function which
controls mesh adaptation. In this paper we study the choice of the monitor function for the variational adaptive mesh
method developed in the previous work [J. Comput. Phys. 174 (2001) 924]. Two types of monitor functions, scalar
matrix and non-scalar matrix ones, are defined based on asymptotic estimates of interpolation error obtained using the
interpolation theory of finite element methods. The choice of the adaptation intensity parameter is also discussed for
each of these monitor functions. Asymptotic bounds on interpolation error are obtained for adaptive meshes that
satisfy the regularity and equidistribution conditions. Two-dimensional numerical results are given to verify the
theoretical findings.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we are concerned with variational mesh adaptation in the numerical solution of partial
differential equations. A variational method utilizes a functional to determine the coordinate transfor-
mation needed for mesh generation. Such a functional is often formulated to measure difficulties in the
numerical approximation of the physical solution, and typically involves a so-called monitor function that
is prescribed by the user to control mesh concentration.

The most straightforward approach of formulating an adaptation functional is to directly minimize
a certain error or one of its bounds. Unfortunately, this approach often leads to an ill-conditioned
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minimization problem and thus has rarely been used in the past. Instead, almost all of the existing vari-
ational methods have been developed based on geometric considerations; e.g., see [5,6,11,14,17,19,20,25,29]
and the books [12,18,22,26] and references therein. For example, Brackbill and Saltzman [6] develop a
popular method by combining mesh concentration, smoothness, and orthogonality. Dvinsky [11] uses the
energy of harmonic mappings as his mesh adaptation functional. Knupp [17,19] and Knupp and Robidoux
[20] develop functionals based on the idea of conditioning the Jacobian matrix of the coordinate trans-
formation. But, these geometry-based variational methods are not without problems. Their lacking a direct
connection with some error makes it tricky to choose a proper monitor function for practical problems. It
also makes it extremely difficult to perform error analysis on the resulting adaptive meshes.

Motivated by the need of an error-oriented as well as well-conditioned mesh adaptation functional,
Huang [16] has recently proposed a new method based on the isotropy (or regularity) and equidistri-
bution criteria. These criteria are devised from the requirement that the physical solution be well re-
solved in the computational domain by a uniform mesh. The developed mesh adaptation functional
leads to a reasonably well-conditioned mesh system and is directly connected to interpolation error of a
function.

In this paper we continue the development of [16] and investigate the in-depth relation of the new
method with interpolation error. The key to the success of a variational mesh adaptation method is to
choose a proper monitor function which controls mesh adaptation. The objective of this work is to define
the monitor function for the new variational method based on estimates of interpolation error. To this end,
we first develop several asymptotic estimates for interpolation error in terms of a coordinate transformation
between the physical and computational domains. The main tool we use is the interpolation theory of finite
element methods. We then carry the estimation further using the so-called regularity and equidistribution
condition: see (41) and (42). (To some extent, minimizing the functional of [16] tends to minimize the
functions on the left-hand sides of the conditions.) The monitor function and bounds on interpolation error
are finally obtained.

An outline of this paper is as follows. In Section 2 we briefly describe the variational mesh adaptation
method of [16]. In Section 3 interpolation error estimates are developed in terms of a coordinate trans-
formation between the physical and computational domains. These results are used in Section 4 to define
both scalar (Winslow’s type) and non-scalar matrix monitor functions. (A scalar matrix is defined as the
product of a scalar function with the identity matrix.) In the same section, the choice of the intensity
parameter is discussed, and error bounds on adaptive meshes are obtained under the regularity and
equidistribution conditions that formulate the approximate satisfaction of the isotropy and equidistribution
criteria. Two-dimensional numerical results are presented in Section 5 to show that the method of [16],
together with the monitor functions developed in Section 4, is able to produce adaptive meshes that satisfy
the conditions. Finally, conclusions are drawn in Section 6.

2. Variational mesh adaptation

Denote by @ C R", n = 1,2, or 3 the physical domain and 2. the logical or computational domain which
is chosen artificially for the purpose of mesh adaptation. We consider mesh generation as a mathematical
equivalent of determining a one-to-one coordinate transformation x = x(&) from Q. to Q in the sense that
adaptive meshes are generated as images of a prescribed and often uniform computational mesh under
x = x(&). The coordinate transformation is defined in a variational method as the minimizer of a functional
measuring difficulties in the numerical approximation of the physical solution.

A new strategy of formulating the adaptation functional is proposed in [16]. That is, the coordinate
transformation is sought such that, for a given n x n symmetric positive definite matrix G = G(x) (which is
often referred to as the monitor function), the “error” function
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E(@) = /(6 — &) I(E) G(E)I (&) (E - &) M)
is uniformly distributed about &, € Q.. This requires
J'GU T =, 2)

where J = (0x)/(0&), for some positive constant c. Criterion (2) is equivalent to the combination of the
following conditions:

Isotropy criterion:
b= = 3)

Equidistribution criterion.

/H J; = constant, 4)

where ;i = 1,...,n, are the eigenvalues of J'G'JT.
Regarding the isotropy criterion, the refined version of the arithmetic—geometric mean inequality [21]
leads to

ﬁ;(ﬂ—m)z<%gii—(Hii>n<—;<\/7‘—\/_'> (5)

For some number ¢ > 1, Jensen’s inequality gives

() (1) [t o]

This shows that ;s can be made to be as equal as possible by minimizing the left-hand side of the in-
equality. Notice that

S =T =Y (vE) ¢, Hi =det(J"'G ) =

i

1
Jg’

where J and g are the determinants of J and G, respectively. Multiplying the left-hand side of (6) with /g
and integrating over 2, we obtain the isotropy functional

]iso[é] :/Q [@(Z(Vﬁ’)TG1V€> — n% (J\\//_Z)q] dx. (7)

1

On the other hand, the equidistribution criterion (4) can be rewritten as

JVeg=o, (8)

where o is a constant that can be found from (8), viz.,

GZQLC| -/Q\/gdx. 9)
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Eq. (8) is a multi-dimensional generalization of the well-known (one-dimensional) equidistribution prin-
ciple [10]. Function J,/g can be made to be as flat as possible by minimizing the functional

ol = [ s d (10)

for some g > 1.
A functional balancing isotropy and equidistribution is obtained in [16] by combining [, [£] and I.,[&],
ie

nq

1¢) 0/{2\/§<Z(v5)Tle> dx + (1 fze)ﬁ/g V8 gy (11)

Vve)'

where 0 € (0,1/2] and ¢ > 1. Note that the integrals in (11) have the same dimension and thus the weight
parameter 0 is dimensionless. The smaller 0 is, the closer the equidistribution (8) is satisfied. Moreover, the
second integral becomes constant for ¢ = 1 and vanishes for 0 = 1/2. In these situations, /[£] is equivalent
or equal to the first integral, which is a well-conditioned functional in the sense that its minimizer exists
uniquely and satisfies the maximum principle: e.g., see [13,23]. A special case is ¢ = 1 and n = 2, where /[¢]
becomes the energy functional of harmonic mappings. It is known [11,24] that a two-dimensional harmonic
mapping is non-singular if Q. is convex.

1[€] appears to have minimizers. This is because /[¢] is coercive for 6 € (0,1/2] and the non-convexity
part of the functional — the equidistribution integral — is known (at least numerically) to have many
minimizers. A minimizer of /[€] seems to be non-singular too. When 0 is close 1/2, the second integral can be
considered as a perturbation to the first one. Thus, the minimizer of /[¢] is close to the unique and non-
singular minimizer of the first integral and therefore is non-singular. On the other hand, when 0 is close to
zero, the second part of (11) dominates the functional and the equidistribution (8) is satisfied closely. As a
consequence, a minimizer satisfying (8) is locally non-singular.

For ¢ > 1, the first integral in (11) is not quadratic. Nevertheless, the numerical solution for its minimizer
is relatively easy because of its convexity. The main difficulty comes from the equidistribution part. Indeed,
we do experience convergence difficulties in non-linear iteration for small values of 6 (e.g. 6 = 0.001) for
very rough physical solutions. In this situation, we recommend to use under-relaxation in the non-linear
iteration. A continuation procedure in 6 will also be helpful.

3. Interpolation error estimates

In this section we develop interpolation error estimates in terms of coordinate transformations between
Q and Q.. The results will be used in Section 4 for defining the monitor function G = G(x), the key to the
success of the variational mesh adaptation method described in the preceding section.

3.1. The classic results

Let D and D = F(D) be affine equivalent open subsets of R", where F is an invertible affine mapping.
Denote by || - || and || - || the Euclidean and Frobenius matrix norms, respectively. Let C be the generic
constant. For notational simplicity, we assume in this section that, when appearing simultaneously in one
equation, function v defined in D and function # defined in D are related to each other through v = § o F~!
ord=voF.

The results of the following three lemmas are standard in the context of finite element methods. The
interested reader is referred to [9] for their proofs.
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Lemma 3.1. For m = 0, there exists a constant C = C(m,n) such that

_1

(o], < CIF|I" - | det(F)[ 2 - [ol,,, Vv € H"(D),

where F' is the Jacobian matrix of mapping F and | - |, 5 and | - |, ;, denote the semi-norms of Sobolev spaces

H" (D) and H™ (D), respectively. Similarly,
oo < CIE) ™ [ det(F)E - (8,5 Vo € H"(D).

Lemma 3.2. Denote by hp the diameter and p, the in-diameter of D, i.e., hp=diam(D) and
pp = sup{diam(S) : S is a ball contained in D}. Define hy and pp similarly. Then,

h _ hjs
IF|<== and |(F)'|<-2.
Pp Pp

Lemma 3.3. For some integers m and k: 0<m<k+1, let H"(D) and H*'(D) be Sobolev spaces and let
Il € (H"'(D); H"(D)) be an operator such that

llp=p Vp € P(D),
where P,(D) is the space of polynomials of degree no more than k. Then,
|0 — 18], <C(1,D) - 8l o V0 € H(D).

The classic estimate for interpolation error can readily be obtained from the above lemmas. Indeed,
assume that {7} is a regular family of quasi-uniform triangulations in Q, viz.,

Regularity:
hx
h=maxhx — 0, max max — < Cj. (12)
KeT, Tie{Th} KETy pg

Quasi-uniformity:

s s
o5 <C .

min /g > VT € {Ti} (13)
KeTy,

For each K € T, define IT € Z(H*"'(K); H"(K)) as
Ow= (II(woF))oF' Ywe HY(K),

where II is the interpolation operator defined in the master element K. It follows from Lemma 3.3
that

> o= Mol SCRE 2 Vo e H'(Q), 0<m<k. (14)

KeTy,
3.2. Local error estimates

We now begin error estimation with defining the coordinate transformation. Assume that an affine
family {7} of triangulations in Q are given so that there exists an invertible affine mapping F between the
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master element K and each element K € 7,. We also assume that the computational domain Q. and the
family {7}, } of its triangulations are chosen such that
(i) For any triangulation 7, on @, there exists a unique triangulation 7;, € {7}, } having the same connec-
tivity and the same number of elements of 7},.
(ii) The family {7}, } of triangulations in the computational domain is affine, regular, and quasi-uniform.
Note that we have not made any assumption on the regularity (such as quasi-uniformity) of the physical
triangulations. Indeed, avoiding such a restriction is generally necessary for meaningful analysis of mesh
adaptation. On the other hand, the regularity assumptions for {7} } are necessary for the convergence of
the polynomial approximation as the mesh is refined.
For an arbitrary element K, € T}, let G be the invertible affine mapping between K and K.. From Lemma
3.2 and the fact that #g = O(1) and pg = O(1) for the master element K, the assumption (ii) implies

c
|G'|| < Ch. and ||(G’)’l|\<h— VK, € Tj,. (15)

Assumption (i) warrants the existence of a one-to-one correspondence between the elements of 7;, and
their counterparts in 7, . Given an element K € T, denote by K, the corresponding element in 7). The
restriction of & = &(x) : Q — Q. on K can be defined as

gy =GoF. (16)

The relations among K, K and K, are illustrated in Fig. 1. (Note that the elements we consider are not
necessarily triangles as illustrated in the figure.)

Theorem 3.1. For given integers m and k : 0 <m <k + 1, let H*'Y(K) and H"(K) be two Sobolev spaces and
let I1 € ¥ (H*"(K); H"(K)) be an operator such that

[p=p VpeP(K).
Then

—m —1m k+1
o= Io],, x < CRE T ol e Vo € HEYYK), (17)

[0 — ITe], , < CH I T " oo &7 Vo € HYY(K), (18)

/ N
\A

Fig. 1. The relations among the physical (K), computational (K,), and master (K) elements.

~>
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Proof. From F = &' o Gand F~' = G™! 0 &, (15) implies that
IF| < Chell Nl [F) < ChM I (19)
Taking D = K and D = K in Lemmas 3.1 and 3.3, we get
—1m % ~
[0 = o], < CII(F) " - [ det(F) - [8], 4 (20)

Combining (20) with Lemma 3.1 and (19) leads to (17).
On the other hand, taking D = K. and D = K in Lemma 3.1 we get

. / A R

[#li16 < CIG ™| det(G)| 2[00 G|y 1. (21)
Combining (20) with (21) results in

o= o], < Cl[(F) " |I"] det(F) PG det(G) [ F[5.0 G '],y . (22)

Estimate (18) follows from (19), (22), det(F’) = det(J)det(G'), and the fact that 60 G™' =wvo Fo
G'=vo&!. O

Remark 3.1. For simplicity, we confine ourselves in this paper to functions with the optimal regularity for
kth degree polynomial preserving operators, i.e., functions of H**!1(K). However, it is worth pointing out
that the strategy used here will also work for functions with lower regularity, e.g., those of H'(K) with
1 <I<k+1, although the convergence order of interpolation error will be reduced accordingly.

3.3. Global error estimates

We now proceed with global error estimation. For an arbitrary matrix 4, it is not difficult to show
? C
s det(4

Adj(4)
det(4)

2 —112
Ml <l AIE = tr(a™a), 472 = H

7 Al (23)

Recalling that the mapping & = &(x) is piecewise linear and the Jacobian matrix J is constant in each
element, from (17) we have

2 Zn ~1)2m 2(k+1 2
S o= M <R ST Y [ e el s
K K K
<eorm Y / 0 D 110 ol de
K K
1 g
ORI ST [ I
K K
where 0 is the differential operator with respect to x. Thus,

1 m(n—
> o= Mo}, < Cr2m N / S LT ) . (24)
K K

Similarly, from (18) and (23) we get

1 m(n—
N o= o], < ORI ST / - [T o o dx, (25)
K Kk Jk
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where O, denotes the differential operator with respect to &. Since 6’;*11) has a very complicated expression in
terms of derivatives with respect to x for large k, we consider here two simple but widely used cases,
piecewise constant interpolation (k = 0) and piecewise linear interpolation (k = 1).

For the case (k = 0), the chain-rule gives

Z ov @xj N ) @
axj 65 is

where a; = (0x)/(d¢') is a convariant base vector. Thus,

Vel = af Vo(Vv)'a; = tr(J"Vo(Vo)'J).

Substituting this into (25) yields
> o= Mol <ChZS / tr(JTVo(Vo)' J)dx. (26)
K K K

For the case k = 1, from the chain-rule and the fact that the mapping &(x) is piecewise linear, we have
62 ox; ax, T 2 112 T 2
o0& aéﬁ Z ax6x o0& 65”_ a,Hag, HanHF:iZj(aiHaj) ’
where H = ((9*v)/(dx;0x;)) is the Hessian matrix of v. Let the eigen-decomposition of H be
H = leag(,ulv s nun)QT'
Define

|H| = Odiag(|w ... 1)) 0"

It is easy to show

la; Hay| <3(aj |H|a; + a} |H |a)).

Thus,
[83ellf <n'y" (af|H|a)’ < ( a, IH|a7> n[te(JT|H|)]. (27)
From (25), we get
S o ), < cr2e /K [t (™))" [t (7| HIT)] dx (28)
A

form=0orm=1.

The estimates (24), (26), and (28) have been obtained under the assumption that the mapping & = &(x) is
piecewise linear. On one hand, this is true for most computations with the variational mesh adaptation. On
the other hand, we can hope that the estimates are asymptotically correct when the mapping is not
piecewise linear. For these reasons and especially the latter one, we will ignore the piecewise linearity re-
striction and use the estimates for any smooth coordinate transformation on any type of meshes.

To summarize, we have from (24) that, for some integers 0 <m <k + 1 and some kth polynomial pre-
serving operator I1,
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o — o}, < CRE"B[E] Vo e H(Q), (29)

where < denotes “asymptotically less than or equal to” and

Bl = [ 5 (7)o (30)
For piecewise constant interpolation (k = 0), (26) gives

o — Iv||> < Ch2B,[E] Vv e H'(Q), (31)
where

By[¢] = /Q tr(JTVo(Vo) " J)dx. (32)

For piecewise linear interpolation (k = 1), we have from (28) that, for m =0 or m = 1,

o — ITo|}, < CH2*™ B[] Vo e HX(Q), (33)
where |
- L T m(n—1) T 2
B[] = /Q S (D))" [T ) (34)

These error estimates may be used for mesh adaptation in various ways. The most straightforward
approach is to directly minimize the functional By, B,, or B;. Unfortunately, there are several drawbacks
associated with this approach. First of all, functionals By, B;, and B3 are non-convex and the existence of
their minimizers is unknown. Moreover, it is unclear whether or not their minimizers, if any, are non-
singular or at least satisfy some type of maximum principles. It is believed that the maximum principle
provides a mechanism to prevent the mapping from becoming singular. Furthermore, B;, B,, and B; are
highly non-linear, no matter whether they are viewed as functionals of x(&) or &(x). This can be seen more
clearly from, e.g., the forms

B, [x] :/ ZaiTVv(Vv)Ta,«Jdé (35)
with J = a; - (ay X a3) and
By[E] = /Q Z le)z(af x @) Vo(Vo) (@ x d)dx (i, ], k) cyclic, (36)

where @' = V& is a contravariant base vector and the Jacobian has the relation 1/J = a' - (a®> x @*). The
high degree of non-linearity makes it extremely difficult to find a minimizer numerically.

Due to these drawbacks, we will not use the direct minimization approach in this work. Instead, we
consider the variational approach described in the preceding section that attempts to equidistribute rather
than minimize a certain error bound. It is interesting though to point out that several researchers have used
the direct minimization approach in a local manner. For example, Bank and Smith [3] minimize an in-
terpolation or a posteriori error estimate for linear finite elements using a Gauss—Seidel-like iterative
method, in which sweeps are run through the vertices, locally optimizing the position of a single vertex
while all others being held fixed. A similar method has been used by Tourigny and Baines [27], Tourigny
and Hiilsemann [28], and Baines and Leary [2] for minimizing the L, norm of the residual of partial
differential equations.
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4. Monitor functions

We define in this section the monitor function using the results obtained in the preceding section. Ac-
cording to (29), (31), and (33), we consider two types of monitor functions, scalar (Winslow’s type) and
non-scalar matrices. (Recall that a scalar matrix is the product of a scalar function with the identity matrix.)
Following common practice, we choose the monitor function to be symmetric and positive definite. (The
necessity of the positiveness for the non-singularity of the coordinate transformation can be easily seen
from the equidistribution criterion (8).) It is emphasized that we seek the coordinate transformation to
bound rather than minimize the functional By, B>, or Bs.

4.1. Winslow’s type of monitor functions

Consider the estimate (29). To define a positive definite G, we replace B; with functional

~ 1 +1+m(n—
B1lE) = [ (") (o o ol ) e

o J2m

1 k+14m(n—1) 1
= oc/g Jam (tr(.ITJ)) <1 + 5 ||6k“v||§> dx, (37)

where o > 0, often referred to as the adaptation intensity parameter, is to be determined. The introduction
of o provides a mechanism for better control of mesh concentration without damaging the convergence
order of estimate (29). The choice of this parameter has been discussed in [4] for the one-dimensional case
and [15] for the multi-dimensional case.

We choose the monitor function so that B; has the form

él [6] = OC/Q (J;/gg)m [tr(JTGJ)]kJrler(n—l)dx. (38)

The motivation is that, during the course of error estimation, the regularity condition (see below) will take
care of the factor tr(J'GJ) while the equidistribution condition (also see below) takes care of the factor
J/g. In the end, an estimate independent of the coordinate transformation can be obtained.

Comparing (38) with (37) and keeping in mind that G is defined as a scalar matrix, we obtain

2
G :](l +i||ak+lv||i>z(k+l—m)+n (39)

\/g _ (1 + é ||ak+lv||f27)l(kAl—_m)+n (4())

We now proceed with estimating B;. Recall that functional (11) has been formulated so that its mini-
mization tends to make the eigenvalues of J~'G~'J T to be equal and the function J /& to be constant. It is
thus reasonable to assume that the coordinate transformation or mesh generated through the functional
I[¢€] satisfies the (solution-dependent) regularity condition

w(Jcr) |’
l(i) <Cyo VxeQ, (41)

ndet(JTGJ)
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and the equidistribution condition
% <Cp X € Q, (42)
where Cj;, and C, are constants and ¢ is defined in (9). One may notice that.J,/g is required to be bounded

from above only (rather than to be close to one). Moreover, the form of (41) is chosen in order to be able to
replace tr(J"GJ) with J,/g under the regularity condition.

Theorem 4.1. For some integers m and k: 0 <m < k + 1, assume that the coordinate transformation satisfies the
conditions (41) and (42) with the monitor function defined in (39). Then, the interpolation error is bounded by

N (k+1—m)+n
|U _ HUlm < Chz (kt-1—m) [/ (u_,'_ HakHUH;)z(HpmHndx] Vo € HkH(.Q), (43)
Q

2(k+1—m+mn /nC2 (k+1—m)/n
iso .

where C = C(Ciso, Cep) is proportional to c

Proof. From (37), we have

B¢ = oz/ (J\z/g)m [tr(JTGJ)]HHm" Ydx

2(k+1—m+mn) (k+14m(n—1))
<aCCy " - / (J\Z/—)m [det(J'GJ)] " dx (using (41))

2k+1 m+mn)/ k+l —m)
"d
\/_ X

2kt l-mtmn)  2(k+1-m) (ks 1-m) )
<aCC, " Cop " / Vgo~ = dx (using (42))
Q

2kt l=mtmn)  2kA1=m) (s 1—m)+n
2kt 1—m-+mn) - 2kt 1—m)+n

< O(CCiso ! Cep o "

The conclusion follows from (9), (29), (40), and the fact that B[] <B,[¢]. O

The theorem shows that the error bound depends continuously on Ci, and C,. In the meantime, this
dependence is moderate in the sense that the powers of the constants, 2(k+1—m+ mn)/n and
2(k + 1 — m)/n, are small or moderate, especially when low degree interpolation polynomials are used (as is
in many practical computations).

4.1.1. Optimality of the monitor function

Generally speaking, it is difficult to make precise comparison of the bound (43) with the classic result
(14) on a uniform mesh. This is because the constant C in (43) depends on Cj, and C,, and can be con-
siderably different from that in (14). On the other hand, (43) has a smaller solution-dependent factor than
that given in (14), i.e.,

2(k+1=m)+4n

|:/ (a+|a/c+lv||i)2(/c1m)+ndx:| n g / (O(+ Ha/HJUHi“) dx (44)
Q Q

and the right-hand side is comparable to |vf;,, if «< [, [|0**'0||> dx. When &*'v is sufficiently smooth, the
two sides of (44) are comparable, and uniform and adaptive meshes having the same number of nodes will
produce similar results. However, when 8**!vis rough, the right-hand side of (44) can become much larger than
the left-hand side, and an adaptive mesh will produce much more accurate results than a uniform mesh does.
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Recall that the purpose of mesh adaptation is to obtain accurate resolution of rough functions. (In the
current circumstance, the roughness can be measured by the ratio of the right-hand side to the left-hand
side of (44) with « being set to be zero.) For the sake of simplicity, we assume hereafter that we are always
dealt with rough functions and thus consider only solution-dependent factors when comparing error
bounds or studying their optimality.

By construction, (39) leads to the smallest error bound (43). (In this sense, (39) is the optimal monitor
function.) To explain this, we consider as an example the widely used monitor function

1
1 1
G:1<1 +&|VU|2> N <1 +&|VU|2> (45)

that corresponds to the piecewise constant interpolation (k,m) = (0,0). Under the conditions (41) and (42),
an error estimate can be obtained from (29) as

n
)

: T et
Jo— ITo||* < CK? /(a+|vu2)2dx} /<u+|VU|2) " dux. (46)
LJQ Q

On the other hand, for the case (k,m) = (0,0) estimate (43) reads as

24n

o — Io||> < CK? /Q (a+ |Vuz)mdx] " (47)

It is not difficult to show

[/Q (oc+|Vv|2>21"dx]%< {/Q (oH—|Vv|2>£dx]%/Q (oc+|Vv\2)nT4dx

and thus (46) has a larger bound than that in (47).

It is interesting to note that the difference between bounds (47) and (46) for adaptive meshes is not as
great as the difference between bound (47) for an adaptive mesh and bound (14) for a uniform mesh. To see
this more clearly, (46) can be enlarged as

-
n—1

n=1
o — Io|> < Chi[/g (a+ |Vv\2) ' dx] . (48)

Thus, the solution-dependent factors involved in the interpolation error bounds associated with the optimal
monitor function (39), the monitor function (45), and a uniform mesh are given, respectively, by

/Q (a+|Vv|2)%dx:2, /Q (oc+|sz)%dx:2, Q|Vv|2dx

for n =2 and

/Q (oc+|Vv|2>%dx:>, /Q (oc+|sz)%dx: , Q|Vv|2dx

Wl

for n = 3. The above observation, together with the fact that the interpolation error bound depends
continuously on Cis, and Ce,, indicates that estimate (43) is rather stable under perturbations to the optimal
mesh distribution resulting from the monitor function (39). This conclusion is consistent with the obser-
vations made by Babuska and Rheinboldt [1] and de Boor [10] for one-dimensional problems. The con-
clusion also explains why many existing methods have some degree of success although they may not
produce optimal adaptive meshes.
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4.1.2. Choice of the intensity parameter

The intensity parameter o should not be chosen either too small or too large. Too small « leads to an over-
concentrated and possibly very skewed mesh, whereas too large « results in a uniform mesh. The following
two guidelines can be used for the choice of a. The first is to make G invariant under the scaling transfor-
mation of v. In this way, a simple multiplication of v by a constant will not affect mesh concentration.
Moreover, a dimensionless G makes it easier and more efficient to find a minimizer of /[¢] numerically. The
other guideline is to have a sufficient number of mesh points concentrated in the region of large ,/g. To this
end, we recall from (42) that , /g is proportional to the mesh density 1/J. Thus, ([, /gdx — [, dx)/ [, /gdx
is a good indicator of the percent of the mesh points concentrated in the region of large ,/g. Define

={xVem~ 1}, o' =0\@ = {xvel) > 1}. (49)

Then
/(\/g—l)dxzo, /\/de—I—/ dx =~ |Q|.
Q/ Q/ Q//
We have
Jo(v/g —1)dx Jo(vVE—1Ddx+ [, (/g - l)dx - f,,(\/_f 1)dx
JovEdx fg’ dx+fg” dx""fg” —Ddx Q]+ [ (vg—1)dx
e B (50)
fQ,, —1dx|
We choose « such that
| (VE-Ddx= ol (s1)

i.e., about 50% of the mesh points are concentrated on Q".
From (40), Q" and Q" can be characterized as

@ ={x| 0]z <o} and Q"= {x|||F" 0l > o},

respectively. Thus,

1 5 \ T
/ (Vg — l)dx%/ <||6k+lv|F> dx.
QU Q” a

From (51), o should be defined such that
T ~i/ 04+ o T . (52)
12| Jo

This suggests

2(k+1—m)+4n
T

= [ Jallo el T a] (53

for the monitor function (39). It is easy to verify that with this definition of «, the monitor function G
and its determinant g are invariant under the scaling transformation of v. To see if (52) is true, from the
definitions of Q' and o we get
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|Q| / ||ak+1 ||Fk+1 m)+ndx < azkﬂ mtn — ‘Ql / Hak-%—l ”FHI m +nd 4+ |Q| / ||ak+1 ||2(k+1 m)+nd

Thus,

|Q|/ ||ak+1 ||Fk+1 m)+ndx<<@/ ||ak+1 Hz(k+1 m)+nd

and (52) holds.

It is interesting to point out the similarity between the definition of o (53) and the solution dependent

factor in (43). With (53), we can readily show

A+1 2kt 1—m)+n 2k+1-m)+n

|:/ (a+||ak+lv||12:>2(’tﬂmlﬂdx:| |:/ Hak+l ” /¢+1 m+nd
Q

Thus, (43) can be written as

2(k+1=m)+n

2n 0
|U _ HU|m < Ch2 k+1—m) l:/ ”akHUHiﬁkH—mHn dx] Yo € Hk+1(Q).
Q

It is remarked that mesh concentration can be adjusted by modifying the definition of «, viz.,

2(k+1=m)+n

1-p T ’
=[S [l e

where B € (0, 1) represents the percent of the mesh points concentrated in Q”; see [15].

4.1.3. Regularity condition

(54)

Recall that /s are the eigenvalues of matrix J'G'J " Let y; = 2", i = 1,...,n. Denote p,;, = min, 1,

and u,,,, = max,; y,. Then regularity condition (41) can be rewritten as
1
; Z :ui 150 (HMZ) :

Lemma 4.1. Regularity condition (41) implies

—2n
Himin = |:\/I’l(l’l - 1)(Cfso - l) + 1:| Hmax-

Proof. From the refined version of the arithmetic-mean geometric-mean inequality (cf. (5)) we have

e (1)

i<j

The result of the lemma follows from (55) and that

Cn 1> 1 . ZKJ(\/_ \/—) 1 . (\/ Hmax — \/E)z
SRR R P Tl Ry

. % 510 Rt
> (:umax ) _ < Hinin ) > ( Himax ) —11 . |
n(n - 1) Himin Himax I’l(l’l - 1) Hmin

(55)
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We recall that functional 7[¢] in (11) is constructed based on the eigenvalues /;’s. It is thus natural to ask
if (41) implies that

tr(J'GlIT .
ndet(J'G-1U Ty

for some constant Ci,. In fact, from Lemma 4.1 it is not difficult to show that the above inequality holds
with

2n

Ciso = |:\/l’l(l’l - 1)(Ci%so - 1) +1
For the current situation, (41) is no more than the standard requirement for mesh regularity. Indeed, for
a scalar matrix G,
r(J'GJ)  tw(J)
n(det(JTGH))"  n(det(J7J))

T
n

Thus, according to this measure, an isotropic mesh satisfying (41) with Cj;, = 1 contains only equilateral
cells.

For convenience, we list in Table 1 the optimal monitor functions of Winslow’s type and their related
information for piecewise constant (k = 0) and piecewise linear (kK = 1) interpolation. It is easy to see that
for each pair of (k, m), both G and ,/g and therefore mesh concentration are dimension dependent (i.e. their
forms are different in different dimensions).

It is remarked that the one-dimensional version of monitor function (39) is basically the same as those
proposed by Carey and Dinh [7] (also see [8]). The only difference is that the current monitor function is
floored by the intensity parameter o.

4.2. Non-scalar matrix monitor functions

Non-scalar matrix monitor functions are considered only for the piecewise constant (k =0) and
piecewise linear (k = 1) interpolation.

Table 1
Monitor functions of Winslow’s type for piecewise constant and piecewise linear interpolation
k m Dim G V8o 1/J Error order
0 0 1D 1+ 4oy (1+ Lo )3 O(h) in | - |
2D I(1+ 1 vof)'? (1+1vo)'”?
3D 11+ 1vof)? (1 +1vof)?
1 0 1D (1442 (144> o) in || - |
2D 101+ 4H|) " (1+2IH )"
22 2.3
3D 11+ 4|H|7)Y (1+ =17
! ! 1D T+ (1+ o) O(he) in |-,
2D 11+ 4|H|7)" (1 + Y a7
2,2/5 24\3/5
3D 1(1+4H]7)” (1+IH]17)*

The definition of the intensity parameter o is given in (53).
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4.2.1. Piecewise constant interpolation
In this case we have (k,m) = (0,0) and the corresponding error estimate is given in (31). Introduce a new
functional as

By[E] =« /Q tr (JT <1 + ;vu(vu)T) J> dx. (56)

The monitor function is defined such that B, can be written in the form

B[] =« /Q Vgtr(JTGJ)dx. (57)
It is easy to get

G = (I+1veveT) - (1 +§|VU|2)ﬁ (58)
and

vi= (1+1w)” (59)

The intensity parameter is chosen as

ﬁ dx:| n+2 (60)

o= [“3‘ Jo Vo

Theorem 4.2. Assume that the coordinate transformation satisfies the conditions (41) and (42) with the
monitor function defined in (58) and o defined in (60). Then, error for piecewise constant interpolation is
bounded by

n+2
o — Iv||* < Chg[/ |vadx} Yo e H'(Q), (61)
Q

2
n

where C = C(Ciso, Cep) is proportional to (CisoCep)

We note that for the case (k,m) = (0,0), the estimate (54) associated with a Winslow-type monitor
function reads as

nt2
n

o — ITo|* < Chg[/ |Vv|ﬂ%dx}
Q

By comparing this with (61), we can see that a Winslow-type monitor function leads a larger bound than a
non-scalar matrix monitor function, provided that the resulting meshes satisfy the regularity and equi-
distribution conditions.

In the current situation, the mesh isotropy measure has a different geometric meaning from that using
Winslow-type monitor functions. Indeed, (41) reads as

tr(JT (1 +1voveT)J) <
n(det(JT(I—i—iVUVvT)J))% b

(62)
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According to this measure, an isotropic mesh (with Cj,, = 1) is allowed to have non-equilateral cells.
The matrix monitor function based on gradient of v,

1 1
G=I+&VUVUT, Vg = 1+&|VU|2 (63)

has been used in the past because of its similarity to the one-dimensional arc-length monitor function. If we
choose the intensity parameter as

1 2
0= |— Vou|dx
o 7o

and assume that the resulting mesh satisfies (41) and (42), we can get

o — Iv||* < Ch? [/Q |Vv|dx]2, (64)
which gives an error bound greater than that given in (61).
4.2.2. Piecewise linear interpolation

In this case we have £k = 1 and m = 0 or 1. The corresponding error estimate is given in (33). The new
functional can be introduced as

Bi[g) :az/gﬁ. [t ()" {tr(JT(1+%|H|)J>rdx

T m(n—1) 2
= o? / 12 {tru;’)} {tr(JT<I+1|H|>J>] dx. (65)
oJn Ji o

Rewriting it into the form

Bl = /Q (Jf)% {tr(,‘g 2 } o [tr(J7GJ)) " dx, )
one can obtain

G = (I+LH]) - det (I +1|H|)™ == o
and

\/§:det(1+§|H)ﬁi,+4 «

The form of (66) suggests that the following new regularity assumption be used,

m(n—1)

ltr(JTJ) ]T tr(JTGJ)
nli ndet (J'GJ)'

RSN}

(69)

z
=}

This condition is different from (41) for m # 0. Like the case of piecewise constant interpolation, an iso-
tropic mesh satisfying the above condition with Ci;, = 1 will generally contain non-equilateral cells. For the
present case, o cannot be separated out from det ( + (1/a)|H|) without significantly enlarging the estimate.
For this reason, « is defined implicitly as

2n

fQ det (1 + i |H|)n—22m+4 dx = |Q| . 21+max{m—l,0} (70)
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Note that the existence of o is guaranteed as long as [, [tr(|H D]/~ dx > 0. The form of (70) is mo-
tivated by the discussion on the choice of « in Section 4.1.2, the desire that ¢ = [, \/gdx is bounded by a
constant independent of v, and the following derivation of a bound of «. In fact, from (70) we have

. 1 1 =)
2‘9‘ g 2_max{n72zm+4_1’0} / (tr (1 + - |H|)> dx
o\ o
2

<2—max{"722++4—1,0}/ (1 I 1 tr(|H|))n2m+4'dx
X
Q no

2n
: 1 Pt
<|Q| + a‘HZmH/ (—tr(|H|)) dx.
o\

1 1 e 5
@ i ;tr(|H|) dx . (71)

Theorem 4.3. For m = 0 or m = 1, assume that the coordinate transformation satisfies the conditions (69) and
(42) with the monitor function defined in (67) and o defined in (70). Then, the error for piecewise linear in-
terpolation is bounded by

o — ITo|}, < C2R2>™ Yo e HA(Q), (72)
where C = C(Cis,, Cep) is proportional to C4/"Cc(g‘2’">/”.

iso

Thus,

o<

We now consider a non-optimal monitor function
1

1 1 E
G:I+&|H\, \/gzdet(1+&|H|). (73)
Assuming that the resultant mesh satisfies (69) and (42), we can obtain from (33) and (65)
1 4-—2m
1 3 n 1 m/n
o — o]}, < Ca?h2%™ [/ det ([ —1—& H|> dx] / det (1 + &|H|> dx, (74)
Q Q

that can be shown to have a bound greater than or equal to that given in (72).
Table 2 lists the matrix monitor functions and related information for piecewise constant and piecewise
linear interpolation. Once again, G and /g and therefore mesh concentration are dimension dependent.

Table 2
The non-scalar matrix monitor functions for piecewise constant and linear interpolation
k m Dim G V8o 1/ Error order
0 0 1D (142" (142" O(he) in || -]
' T . 2\~ 1/4 | N\ /4
2D 14+1vu(w0)") (1+4veP) (1+19ul?)
T 5\ /5 A1/5
3D (1 +1V(V) )(1 +5\W|—) (1 + 1|Vl )
1 0 1D (1 +4er* (144 o) in | -
2D (I +YH]) det (1 +4H)) " det (1 + ()"
3D (I +YH]) det (1 +4m)) " det (1 +YH()*"
1 1 1D (1+L*? (1 +Lrp? O(h,) in | - |,
2D (1 +1YH]) det (1 + 1))
3D (1 +YH]) det (1 +4m)) " det (7 +YH))**

The intensity parameter o is defined in (70).
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5. Numerical experiments

We present in this section two-dimensional numerical results obtained for three examples. Having the
roles of dependent and independent variables been interchanged, the two-dimensional Euler-Lagrange
equation of functional /[¢] defined in (11) reads as [16]

6111652 a126§6 22a 5+ af a on
H(QI){ ’x x x Ox Gx}
+ Bi—=+2Bo——+Bn—+b S +b—
[ “6.’,‘2 126.’,‘6;7 226172 laé 2611
(1 -20)(q —1)2"vg

02 0? 0 0
[CHGS +2C12—x+czz x+01—x+02 x} =0

B (G g ogon - o Toe T oy

where x = ( 2 )_/) and & = (& 5)" are the physical and computational variables, G = G/g"/®, § = (a")"
Gla' + (&)'G'a, J = xgy, — x,Ve, and

| Xe Xy 1_1 W 2_l —Ve
a, = ) - ) - 77 ) - 7 .
S A TR R T

The coefficients are given by

an = (@)'G'a', ap=(a")'G'd, an=(a)G'd,

\r0G! 106G, 510G 06T
0= @) e - @, =) e~ @)
By = Z(G_lal) (G‘lal)T(a1 (a")" +d'( )T),
be = |(a) (67@) "+ (6@) ()| ()" + '@,

By = Z(G_laz) (G‘laz)

b= —(a)'G 1al[(al)T a;al (a )Tagé_ 2
e @) |

by = —(@)'G'd l(al)Tag—;al (a )Tagé_ 2
~@ree @ |

1
Ch=a (al)T, Cp= 3 <a1 (az)T + az(al)T), Cy = az(az)T,

. _6ln(\/§) . _aln(\/g)
1—7af ) 2_—611 .
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Note that the terms in the second square bracket in (75) result from the non-quadratic nature of the
functional and those in the third bracket from the equidistribution. In our computations, Q. is chosen to be
the unit square and the computational mesh is a rectangular mesh. (75) is discretized using central finite
differences and solved iteratively with under-relaxation and with the coefficients being calculated at the
previous iterate. The linear algebraic system is solved using a preconditioned conjugate gradient method.
The converged mesh is obtained when the root-mean-square norm of the residual is less than 1073, All
computations start with a uniform mesh and use a fixed and uniform distribution of boundary points. To
show a clear picture of how the variational method works, no smoothing is used for the monitor function.
But it should be pointed out that in practice, application of a few sweeps of a low pass filter to the monitor
function produces smoother meshes and often leads to more accurate results.
In the presented results, ¢; and e¢; denote the error functions for piecewise constant and linear inter-
polation, respectively. Ci, is defined as
T
Ciso = max tr(J—GJ)] (77)
(<22 (det(JTG))?

for the cases of Winslow-type monitor functions and non-scalar matrix G with £ = 0 (piecewise constant
interpolation) and

(N wJGr
Ciso = max [ 1 )} L ) i (78)
wise L 2) ] 2 det (JTGI)
for the case of non-scalar matrix G with k = 1 (piecewise linear interpolation). C,, is defined as
J
Cep = max Lg, (79)
(xy)eQ O
where o is defined in (9).
Example 1. Our first example is to generate adaptive meshes for
v(x,) = tanh (100((x — 1/2)* + (y — 1/2)* = 1/16)) (x,y) € @ = (0,1) x (0,1). (80)

Some typical converged adaptive meshes are plotted in Fig. 2. It can be seen that mesh points are con-
centrated in the correct regions. There is no significant difference between the results using scalar and non-
scalar matrix monitor functions for all but the case of piecewise constant interpolation with a non-scalar
matrix monitor function.

We list in Table 3 the results obtained using the variational method (6 = 0.1 or 0.5) described in Section
2 with optimal monitor functions for piecewise constant and piecewise linear interpolation. They confirm
the theoretical prediction on the convergence order. Specifically, the Z? norm of the error of piecewise
constant interpolation |leg| and the H! semi-norm of the error of piecewise linear interpolation
le1]; = || Ve || converges linearly whereas the L? norm of the error of piecewise linear interpolation |e;|| has
quadratic convergence. For all but the case of piecewise constant interpolation & = 0 with non-scalar
matrix G, we have Ci, < 3 and C,, < 4. This shows that the method described in Section 2 is able to
generate meshes that satisfy the regularity and the equidistribution conditions (41) and (42) with relatively
small constants Cis, and Cep.

The results for the case of piecewise constant interpolation (k = 0) with a non-scalar matrix monitor
function can be explained as follows. For this case, if « is not sufficiently large (and this seems to be the case
in our computations),
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Fig. 2. Converged adaptive meshes of size 81 x 81 for Example 1 are obtained using the variational method (6 = 0.1) with optimal
monitor functions defined for piecewise constant interpolation (k,m) = (0,0) and piecewise linear interpolation (k,m) = (1,0) and
(1,1). The left column corresponds to Winslow-type monitor functions while the right column corresponds to non-scalar matrix ones.
Rows 1, 2, and 3 correspond to the cases (k,m) = (0,0), (1,0), and (1,1), respectively.
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Table 3
Interpolation error on adaptive meshes obtained for Example 1 using the variational method (0 = 0.1 or 0.5) with optimal scalar and
non-scalar matrix monitor functions for (k,m) = (0,0), (1,0), and (1,1)

0 Jimax Winslow-type G Non-scalar matrix G

lleol| lleoll o Ciso Cep lleoll lleoll Ciso Cep

(k,m) = (0,0): Piecewise constant interpolation

0.5 21 7.63e -2 9.5% -1 1.16 2.71 6.39¢ -2 1.10e00 5.86 3.90
41 3.30e-2 4.15e—-1 1.29 3.23 2.77e-2 5.0le—1 9.80 5.71
81 1.53e-2 1.93e—1 1.38 3.30 1.48e—-2 2.44e-1 11.4 10.1
161 7.36e -2 9.30e -2 1.42 3.23 8.08¢—-3 1.23e-1 10.9 19.8
0.1 21 4.63e -2 6.00e -1 1.71 1.74 5.3le-2 7.6le—1 7.65 1.79
41 2.05e-2 2.4% -1 1.96 1.69 2.21le-2 3.56e -1 13.7 2.05
81 9.76e -3 1.08e—1 2.14 1.61 1.05¢-2 l.6le—1 14.5 2.83
161 4.74e-3 5.16e -2 2.26 1.51 5.19¢-3 7.6le-2 13.8 4.15
llexl llerll Ciso Cep llex I llelloo Ciso Cop
(k,m) = (0,1): Piecewise linear interpolation
0.5 21 5.88e—2 4.63e—1 1.04 1.74 3.90e-2 3.63e—1 1.38 2.30
41 1.08e -2 1.16e—1 1.19 2.40 8.74e -3 1.04e—-1 1.42 2.85
81 2.22e-3 2.13e-2 1.26 2.66 1.86e -3 2.53e-2 1.73 3.36
161 5.05e -4 4.49¢ -3 1.28 2.51 3.74e -4 1.13e-2 1.63 3.52
0.1 21 3.2le-2 3.93¢-1 1.39 1.41 2.49% -2 2.46e -1 1.74 1.43
41 52le-3 5.83e-2 1.75 1.66 4.58e -3 3.90e-2 2.58 1.44
81 1.18e -3 9.40e-3 1.82 1.46 1.08e -3 9.34e-3 2.28 1.35
161 2.90e -4 2.80e-3 1.91 1.34 2.66e—4 2.85e-3 2.69 1.29
[Vell llerll. Ciso Cep [Vell lleill Ciso Cep
(k,m) = (1,1): Piecewise linear interpolation
0.5 21 5.06 4.52e-1 1.06 2.02 5.55 44le-1 1.23 2.58
41 2.16 1.14e -1 1.25 2.89 2.00 9.95e -2 1.41 2.88
81 0.96 2.26e-2 1.35 3.36 0.78 2.54e-2 1.47 3.06
161 0.45 4.20e-3 1.36 2.87 0.35 4.36e-3 1.44 2.81
0.1 21 3.37 3.08e—1 1.74 1.65 3.18 2.6% -1 1.55 1.51
41 1.38 6.42¢ -2 2.24 2.24 1.32 4.00e -2 1.82 1.49
81 0.67 1.49¢ -2 2.10 1.82 0.63 1.10e -2 2.05 1.36
161 0.33 4.48e-3 2.12 1.49 0.31 2.69¢-3 2.39 1.26

o=

1 1 1 } 1
tr(l+&VvVvT> = <2+&|Vv|2> > 2(1 +&|VU|2) :Z(det ([-l-&VUVUT)) .

This indicates that G is highly anisotropic. As a result, both conditions (41) and (42) are difficult to be
satisfied by a mesh with small constants Ci,, and C.,. To reduce the anisotropic feature of G, we can use a
larger a. For instance, we take

o= {@/wadxr, (81)

the intensity parameter (53) defined for the Winslow-type monitor function (k = m = 0 and n = 2). The new
results are listed in Table 5. It can be seen that both Ci, and C., have now much smaller values. For
comparison purpose, we plot in Fig. 3 converged meshes obtained with « defined in (60) and (81).
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(a) Non-scalar Matrix, (k,m) = (0,0) (b) Non-scalar Matrix with modified alpha , (k,m) = (0,0)
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Fig. 3. Converged adaptive meshes for Example 1 are obtained using the variational method (0 = 0.1) with the non-scalar matrix
monitor function (58) based on function gradient. The difference in adaptive meshes is shown for different definitions of «; (a) with (60)
and (b) with (81).

Table 4
Interpolation error is obtained on uniform meshes for Example 1

max Piecewise constant interpolation Piecewise linear interpolation
lleoll lleollc llex Vel ller Il
21 1.2le—-1 1.46e00 8.143-2 6.11 5.08e—-1
41 6.39¢—-2 8.58e—1 2.48¢-2 3.60 245 -1
81 3.23e-2 4.58e—1 6.60e -3 1.89 7.32e-2
161 1.62¢-2 2.32¢-1 1.69¢ -3 0.96 1.92¢-2

It is interesting to note that scalar and non-scalar matrix monitor functions lead to very comparable
results for this example, although generally speaking, the latter produces slightly greater Ci, and C,;,. Like
in [16], the smaller 0 is, the larger Cis, and the smaller Ce,.

Numerical results obtained on uniform meshes are listed in Table 4. For comparison purpose, the results
for the maximum error are also listed. We can see that an adaptive mesh leads to more accurate results than
a uniform mesh with the same number of points. The difference is significant, especially in the maximum
error.

Table 5
Interpolation error for Example 1 on adaptive meshes obtained using the variational method (6 = 0.1 or 0.5) with larger « (81) and a
non-scalar matrix monitor function for piecewise constant interpolation

0 Jmax lleol| lleoll Ciso Cop
0.5 21 6.67¢~2 9.90e -~ 1 1.90 2.08
41 2.77e-2 3.99¢ -1 1.99 2.70
81 1.30e -2 1.74e -1 1.72 3.94
161 6.22¢-3 8.05¢ -2 1.51 5.34
0.1 21 7.08¢ -2 9.12e~1 2.57 1.36
41 2.99¢ -2 3.8le—1 2.93 1.31
81 1.38¢-2 1.72e-1 2.93 1.31

161

6.63¢ -3

8.15e -2

2.88

1.30
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Finally, we note that in two dimensions, traditional monitor functions are different from the optimal
monitor functions only for two cases with non-scalar matrix monitor functions, (k,m) = (0,0) and
(k,m) = (1,0). The numerical results obtained for these cases with both traditional and optimal G are listed in
Table 6. One can see that the traditional G defined in (63) leads to slightly better results than those with the
optimal G (58). Itis emphasized again that, as discussed in Section 4.1.1, an optimal monitor function does not
necessarily produce the smallest error because the constant C in the error bound depends on the values of
several other constants, including Ci, and C, that measure how close conditions (41) and (42) are satisfied.

Example 2. The second example is to generate adaptive meshes for a given analytical solution

v(x,y) = tanh (30 (x2 +)7 - %)) + tanh (30 ((x — 0.5+ (x—0.5) - é))

+ tanh <30<(x —0.5) + (x+0.5)* — %)) + tanh <3o<(x +0.5)7% + (x—0.5)" — %))

+ tanh (30 <(x+0.5)2 + (x+0.5)° —%>> (82)

defined in [—2,2] x [—2,2]. This example is more difficult than Example 1 since the mesh points have to be
concentrated to a more complicated region — the union of five circles.

Typical adaptive meshes obtained with scalar and non-scalar matrix monitor functions are plotted in
Fig. 4. Once again, there is no significant difference between the results obtained with scalar and non-scalar
matrix G, except for the case of piecewise constant interpolation with a non-scalar matrix G. For this case,
the mesh lines are not aligned with tangential directions at the intersection of any two circles, such as
(x,y) = (—0.25,-0.25). In the neighborhood of this point, we have

v, = 60(2x+0.5) = 0, v, =60(2y+0.5) ~0
and
G=1+1(1/2)Vo(Vo)" ~ 1.

Table 6
Comparison of traditional and optimal non-scalar monitor functions for the cases (k,m) = 0 and (k,m) = (1,0)
Jmax Traditional G Optimal G
(63) for G, (81) for o (58) for G, (60) for o
lleoll lleollc Ciso Cep lleoll lleollc Ciso Cep
(k,m) = (0,0)
21 4.39¢ -2 5.92e-1 2.18 1.64 5.3le-2 7.6le—1 7.65 1.79
41 1.91e-2 2.36e—-1 2.20 1.44 2.21le-2 3.56e—1 13.7 2.05
81 8.90e -3 9.57e-2 2.23 1.36 1.05¢ -2 1.6le—1 14.5 2.83
161 4.48¢—-3 4.72¢ -2 2.23 1.39 5.19¢-3 7.6le—2 13.8 4.15
(73) for G, (70) for « (67) for G, (70) for «
HeIH Hele CiSO CSP HelH Hele Ciso CSp
(k,m) = (1,0)
21 1.84e -2 1.79¢ -1 2.07 1.78 249 -2 2.46e-1 1.74 1.43
41 3.90e -3 3.92e-2 2.48 1.62 4.58¢—-3 3.90e -2 2.58 1.44
81 1.18e -3 1.22e-2 3.53 1.88 1.083-3 9.34e -3 2.28 1.35
161 3.86e—4 3.98¢-3 5.84 2.67 2.66e—4 2.85¢-3 2.69 1.29

Interpolation error is shown for Example 1 on adaptive meshes obtained using the variational method (6 = 0.1).
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Thus, the mesh tends to be rectangular around this point.
The other results are listed in Table 7. The corresponding results obtained with uniform meshes are listed
in Table 8. They confirm the observations made for Example 1.

Example 3. The last example is the numerical solution of the boundary value problem of a convection
dominated elliptic equation

ou Q*u  du ) Re—1) s

a=@+a—y2+w(1—e< >)sm(wy) 0<xy<l (83)

subject to Dirichlet boundary conditions that are chosen such that the exact solution is given
u(x,y) = (l - eR(x71)> sin(wy).

R and w are taken as R = 35 and w = 1.5%. This example has been used by several researchers, e.g. [11], to
demonstrate the efficiency of adaptive mesh methods.

Table 7
Interpolation error on adaptive meshes obtained for Example 2 (R = 30) using the variational method (0 = 0.1) with optimal scalar
and non-scalar matrix monitor functions for (k,m) = (0,0), (1,0), and (1,1)

Jmax Winslow-type G Non-scalar matrix G
lleoll lleoll« Ciso Cop lleoll lleollo Ciso Cep
(k,m) = (0,0): Piecewise constant interpolation
21 4.23e-1 1.52e00 1.36 1.83 4.99% -1 1.69¢00 9.03 2.34
41 l.6le—1 9.30e -1 2.13 1.81 2.12e-1 1.03e00 20.3 2.71
81 7.4le-2 4.77e—-1 2.92 1.66 9.18e -2 7.88e—1 57.5 4.29
161 3.58¢-2 2.12e-1 3.98 1.55 4.5le-2 2.64e—1 48.7 5.77
llerl lleille Ciso Cep llex I ller Il Ciso Cep
(k,m) = (1,0): Piecewise linear interpolation
21 427e-1 8.66e — 1 1.20 1.25 42le-1 8.63¢e—1 2.35 1.41
41 8.3le—-2 2.58e—1 1.46 1.49 7.29¢ -2 2.74e -1 2.21 1.71
81 1.77e -2 1.22e-1 2.06 1.66 1.49¢ -2 6.33e -2 3.13 1.57
161 432e-3 3.13¢e-2 2.40 1.46 3.46e -3 1.20e -2 3.69 1.56
[IVe| Hele Ciso Cep Vel HelHoc Ciso Cep
(k,m) = (1,1): Piecewise linear interpolation
21 11.1 7.98e—1 1.33 1.40 11.5 7.17e—-1 1.82 1.42
41 5.30 3.20e-1 1.64 1.91 4.75 2.89¢ -1 2.29 1.85
81 3.04 2.06e -1 2.61 2.26 2.24 1.02e -1 4.28 1.77
161 1.62 5.63e-2 3.20 1.69 1.07 1.64e -2 3.92 2.52
Table 8
Interpolation error is obtained on uniform meshes for Example 2 (R = 30)
Jimax Piecewise constant interpolation Piecewise linear interpolation
lleoll lleoll lle | [Vel llei |l
21 7.08¢ -1 1.79¢00 5.82¢e—1 12.6 9.04e -1
41 4.04e -1 1.31e00 1.91le-1 7.83 7.31e—-1
81 1.99¢ -1 7.53e—1 7.06e -2 5.09 3.08e -1
161 1.00e -1 391e-1 1.85e-2 2.64 9.12e-2
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The differential equation is first transformed into the computational domain and discretized on a uni-
form computational mesh using central finite differences. The resultant system consisting of the physical
and mesh equations is solved alternately for the physical solution and the adaptive mesh. The convergent
results are obtained when the difference in the physical solution at two consecutive iterates is small. For this
problem, the physical solution has a sharp boundary layer at x = 1. Since a uniform distribution of
boundary points cannot lead to accurate solutions, we use a non-uniform one that is generated using the
one-dimensional mesh equation (i.e. the Euler-Lagrange equation of the 1D version of 7[]), see e.g. [15] for
detail. ¢y and e; denote the error functions for the piecewise constant and linear interpolation of the
computed solution, respectively. (The interpolation polynomials are computed in the same manner as in the
previous two examples but with the nodal function values being replaced by the computed solution values.)

Table 9
(Example 3) Solution error on adaptive meshes obtained with the variational method (6 = 0.1) using scalar and non-scalar matrix
monitor functions

Jmax Winslow-type G Non-scalar matrix G
leo]| (ratio) lleo]| . (ratio) leo|| (ratio) lleo]| . (ratio)
G is calculated with (k,m) = (0,0)
17 5.53e-2 4.83e—1 5.53e-2 3.69¢ -1
33 2.63¢-2(2.1) 2.43¢-1 (2.0 2.70e -2 (2.0) 1.88e—1 (2.0)
65 1.30e -2 (2.0) 1.21e—1 (2.0) 1.34e -2 (2.0) 9.6le—2 (2.0)
129 6.47¢ -3 (2.0) 6.11e—2 (2.0) 6.73¢ -3 (2.0) 4.79¢ -2 (2.0)
[ler]| (ratio) lle1], (ratio) lex|| (ratio) lle1]l, (ratio)
G is calculated with (k,m) = (1,0)
17 1.0le-2 1.62e—1 9.66e -3 1.10e—-1
33 1.89¢ -3 (5.3) 4.84¢-2 (3.3) 1.71e-3 (5.6) 2.83¢-2 (3.9)
65 42le—4 (4.5) 1.31e-2 (3.7) 3.68¢—4 (4.6) 7.32¢-3 (3.9)
129 1.02e -4 (4.1) 3.74e -3 (3.5) 1.05e—4 (3.5) 2.88e—3 (2.5)
[[Ve || (ratio) llei]| . (ratio) [[Vey|| (ratio) lle1]| (ratio)
G is calculated with (k,m) = (1,1)
17 8.68e—1 1.34e -1 1.00¢00 9.86e -2
33 3.90e-1(2.2) 3.81e—-2 (3.5) 3.86e—1 (2.6) 2.54e-2 (3.9)
65 1.85e— 1 (2.1) 9.82¢—3 (3.9) 1.63e—1 (2.4) 5.77e-3 (4.4)
129 9.43¢ -2 (2.0) 2.81e-3 (3.5) 7.69¢ -2 (2.1) 1.38¢e—-3 (4.2)

ey and e, denote the error functions for the piecewise constant and piecewise linear interpolation of the computed solution,
respectively. (That is, the interpolation polynomials are computed based on the nodal values of the computed solution.)

Table 10

(Example 3) Solution error on uniform meshes, ¢, and e; denote the error functions for the piecewise constant and piecewise linear
interpolation of the computed solution, respectively. (That is, the interpolation polynomials are computed based on the nodal values of
the computed solution.)

Jimax Piecewise constant interpolation Piecewise linear interpolation
|leo]| (ratio) [leo|l (ratio) |ler|| (ratio) Ve || (ratio) ller]|. (ratio)
17 6.8le-2 6.86e—1 2.52e-2 1.78e00 2.28e—1
33 3.47e¢-2 (2.0) 4.70e—1 (1.5) 6.85¢—3 (3.7) 9.66e—1 (1.8) 8.94e -2 (2.6)
65 1.75¢ -2 (2.0) 2.86e—1 (1.6) 1.75¢ -3 (3.9) 4.94e-1 (2.0) 2.86e—2 (3.1)

129 8.74¢ - 3 (2.0) 1.60e—1 (1.8) 4.39¢ -4 (4.0) 249 -1 (2.0) 8.16e—3 (3.5)
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Fig. 5. Converged adaptive meshes of size 33 x 33 for Example 3 are obtained using the variational method (6
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Note that both |||, and |le;||,, are different from (and in fact greater than) the nodal maximum error of
the solution.

The numerical results obtained on adaptive and uniform meshes are listed in Tables 9 and 10, respec-
tively. Overall, the non-scalar matrix monitor functions lead to slightly better results than those of Win-
slow’s type. Once again, the results confirm the theoretical prediction on convergence, namely, |leo|| =O(A.),
leill = O(h?), and ||Ve|| = O(h.), where h, = 1/GJmax = 1/Kmax. Finally, typical adaptive meshes are
shown in Fig. 5.

6. Conclusions

In the previous sections we have developed several (asymptotic) interpolation error estimates in terms of
a general coordinate transformation between the physical and computational domains. Both scalar
(Window’s type) and non-scalar matrix monitor functions are defined based on these estimates for the
variational mesh adaptation method developed in [16]. These monitor functions are optimal in the sense
that they lead to the smallest physical-solution-dependent factor in error bounds. The choice of the in-
tensity parameter is also given for each monitor function.

The regularity and equidistribution conditions (41) (or (69)) and (42) play a crucial role in the devel-
opment. They formulate the approximate satisfaction of the isotropic and equidistribution criteria used in
[16] for designing the mesh adaptation functional. They can be used as measures for mesh regularity and
adaptation. Indeed, a mesh that satisfies (41) with a Window-type monitor function and Cj, = 1 will
consist of only equilateral cells. For a non-scalar matrix monitor, the mesh regularity can be better un-
derstood in a Riemannian space having the monitor function as its metric tensor. An isotropic mesh in this
space can have skewed cells in the physical domain.

Under the regularity and equidistribution conditions we have obtained asymptotic interpolation error
bounds on adaptive meshes. It is shown that these bounds are generally much smaller than those obtained
on a uniform mesh for rough functions. Similar interpolation error bounds are also obtained for several
traditional monitor functions. Most of them are not optimal. However, the difference in the interpolation
error on adaptive meshes obtained with optimal and non-optimal monitor functions are not as great as that
on adaptive meshes and uniform meshes. This observation, together with continuous dependence of error
bounds on Cj, and C, (see (41) and (42)), indicates that the optimal error bounds are rather stable to
perturbations of the optimal meshes. This is consistent with the observations made by Babuska and
Rheinboldt [1] and de Boor [10] for one-dimensional problems. Moreover, a non-optimal monitor function
can lead to reasonably accurate results as long as it stays to some extent close to the optimal one. This may
explain why many existing methods can have a certain degree of success even though they do not produce
an optimal adaptive mesh.

We have presented two-dimensional numerical results obtained using the method of [16] with the
monitor functions developed in Section 4 for three examples. The results show that the method is able to
produce adaptive meshes that satisfy the regularity and equidistribution conditions. The theoretical pre-
diction on convergence orders are verified by the numerical results.
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