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Abstract

Accurate modeling of groundwater flow and transport with sharp moving fronts
often involves high computational cost, when a fixed /uniform mesh is used. In this
paper, we investigate the modeling of groundwater problems using a particular adap-
tive mesh method called the moving mesh partial differential equation approach.
With this approach, the mesh is dynamically relocated through a partial differen-
tial equation to capture the evolving sharp fronts with a relatively small number
of grid points. The mesh movement and physical system modeling are realized by
solving the mesh movement and physical partial differential equations alternately.
The method is applied to the modeling of a range of groundwater problems, includ-
ing advection dominated chemical transport and reaction, nonlinear infiltration in
soil, and the coupling of density dependent flow and transport. Numerical results
demonstrate that sharp moving fronts can be accurately and efficiently captured by
the moving mesh approach. Also addressed are important implementation strate-
gies, e.g. the construction of the monitor function based on the interpolation error,
control of mesh concentration, and two-layer mesh movement.

keyword: groundwater modeling, mesh adaption, mesh movement

1 Introduction

Great concern over world wide groundwater problems has prompted intensive research in
groundwater modeling in the past three decades. Much progress has been made, yet the
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quest for more accurate and efficient methods remains active, especially in solving prob-
lems involving sharp moving fronts. Conventional methods tend to produce oscillatory
solutions and excessive numerical dispersion in regions around sharp fronts for such prob-
lems. A current remedy is a type of methods referred to as the mixed Eulerian-Lagrangian
method (see [21] for a detailed review), which solves, for example, the advection part of
the transport problem using particle tracking in the Lagrangian frame while simulating
the dispersion part in the Eulerian frame.

Many have come to recognize mesh adaption as an effective tool for simulating sharp
fronts and reducing numerical dispersion and oscillation. It has been amply demonstrated
that significant improvements in accuracy and efficiency can be gained by adapting the
mesh nodes so that they remain concentrated in regions of sharp fronts. There have been
a number of applications of mesh adaptation in groundwater modeling. For example, Yeh
et al. [19] combine the method of characteristics (MOC) and the modified MOC (MMOC)
with local grid refinement and effectively avoid the numerical dispersion and oscillation
problem in solving advection-dispersion equations. Trompert [18] applies local-uniform-
grid refinement to modeling transport in heterogeneous media. Gottardi and Venutelli
[12] apply the moving finite element method (MFE) of Miller and Miller [16] to one-
dimensional infiltration problems. Gamliel and Abriola [10, 11] modify the MFE and apply
it to the simulation of multi-phase flow in porous media. Zegeling et al. [20] analyze the
coupling of density dependent flow and transport using the moving grid method developed
by Dorfi and Drury [8].

The so called moving mesh approach, as advocated by Miller and Miller [16] and
Zegeling et al. [20], differs from the grid refinement [18, 19] in that the former keeps the
same number of mesh points throughout the entire solution process. Thus, the size of
computation and data structure are fixed, which enables a much easier implementation.
The widely used method of characteristics (MOC) can also be considered as a type of
moving mesh method. MOC implicitly defines the coordinate transformation using the
characteristic equation of the partial differential equation (PDE) and moves the mesh
points along the characteristic lines. However, the MOC often generates a very skewed
mesh which is not suitable for use in simulating other physical processes such as dispersion.
Indeed, the MOC is known to be more feasible for the solution of hyperbolic systems. It
is interesting to point out that for its connection to the MOC or the Lagrangian method,
the moving mesh method is sometimes referred to as the quasi-Lagrangian method.

In this paper, we consider a particular moving mesh method, the so-called moving
mesh PDE (MMPDE) approach proposed by Huang et al. [14, 15]. With this approach,
adaptive moving meshes are generated as images of a fixed (computational) mesh in the
auxiliary domain through a time dependent coordinate transformation or the solution of
an MMPDE. The mesh points are thus continuously relocated and dynamically adapted
to solution behavior, which provides an ideal adaptive strategy to capture evolving sharp
fronts without using a large number of grid points. The MMPDE is defined as the gradient
or heat flow equation of a functional, which is related to the well-known equidistribution
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principle [7] and measures the difficulty in approximating the solution. The method has
been successfully applied to various one- and two-dimensional problems, e.g. see [3, 4].
Theoretical and numerical studies have shown that the approach generates non-singular
meshes at least in one and two dimensions [3, 14, 15].

In the rest of this paper, we first introduce the theoretical base and methodology of
the MMPDE approach. Several implementation strategies are then explored. In partic-
ular, we investigate in detail the proper choice of the monitor function, control of mesh
adaption, and two-layer mesh movement. A numerical example is used to demonstrate the
effectiveness of the implementation strategies. We apply the method to a variety of one-
dimensional groundwater problems, including advection dominated chemical transport
and reaction, nonlinear infiltration in soil, and the coupling of density dependent flow
and transport. The accuracy and efficiency of the MMPDE approach are demonstrated.
Conclusions and comments are given in the final section.

2 Numerical Method

For simplicity we describe the numerical method only for the advection-dispersion equa-
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where D is the dispersivity and the flow velocity is taken as V = 1. The method can be
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straightforwardly extended to other systems.

2.1 Adaptive Moving Mesh Method

We use here the MMPDE method first proposed in [14, 15]. Specifically, the method is
based on a coordinate transformation z = z(¢,t) : Q. = (0,1) — Q = (0,1) between
the physical and computational domains. Adaptive moving meshes are then generated
as images of a fixed, uniform computational mesh under the coordinate transformation.
Hereafter the mesh and the coordinate transformation are used synonymously.

The basic idea behind the MMPDE moving mesh method is that a transient partial
differential equation, often referred to as a moving mesh PDE (MMPDE), is employed
to define the coordinate transformation. In one dimension, the equidistribution principle
[7] plays an important role in mesh adaption. It employs the so-called monitor function
to measure the difficulty in the numerical solution of the physical PDE and places more
mesh points in regions where the monitor function is large. The equidistribution can be
achieved by minimizing the functional
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where £ = £(z, t) is the inverse coordinate transformation of z = z(§,t) and g = g(z,t) > 0
is the monitor function. The MMPDE is then defined as a modified gradient (or heat)
flow equation of I[¢], i.e.,
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where p is a to be determined positive function, (67)/(5€) is the functional derivative, and
T is the user prescribed parameter used for adjusting the time scale of mesh movement.

From the relation
oz ox 0§
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that can be obtained by differentiating x = x(£(x, t),t) with respect to ¢ while z is fixed,
we can rewrite the MMPDE into
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where z; = (9z)/(9€). As in [13], we choose p = /g% + g7/(gx¢)*, where g¢ = (9g)/(0€),
in order to make the resultant mesh equation invariant under transformations g — c1g
and ¢ — cyx for any positive constants ¢; and cy. Thus, we obtain
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Generally speaking, it is not difficult to choose a value for 7. Our limited experience
shows that a value of 1072 or 10~ works well for most problems. In contrast, the choice
of ¢ is much more difficult. Since the success of the moving mesh strategy relies crucially
on the choice of g, we leave the discussion to the next subsection.

Several features of (2) are worth mentioning. (2) is nonlinear but parabolic. (2) is
always numerically integrable. Moreover, it can be shown that the solution or the coor-
dinate transformation exists and is non-singular. Further, the equidistribution principle
can be obtained by simply taking 7 = 0. In this sense, 7 can be regarded as a relaxation
parameter and (2) as an approximation of the equidistribution principle. The smaller 7
is, the prompter the mesh responds to the change of the monitor function.

The coupled system of the physical and mesh equations (1) and (2) must be solved for
both the physical solution and the mesh. We use here the method of lines approach and
discretize MMPDE (2) and physical PDE (1) in space via standard central finite differ-
ences. We note that (1) is discretized through its transformed form in the computational
coordinate, i.e.
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The resultant system of ordinary differential equations can be integrated either simul-
taneously or alternately. Note that the coupled system is generally highly nonlinear, even
when the original physical PDE is linear. This can be easily seen from the transformed
physical PDE (3) where z; appears in denominators. Also, the size of the coupled sys-
tem is larger than that of the original one. This increase in size is more significant in
higher dimensions. These features of the coupled system make the simultaneous solution
procedure less attractive than the alternating procedure. Based on this consideration, we
adopt the following alternating solution procedure.

Alternating Procedure: Assume that the physical solution v™, mesh ™, and time
step At, are given at time t = t,,.

(i) Compute monitor function g(z,t,) using u" and z" and smooth it. Note that
the monitor function is understood as a continuous function of z in the sense of
interpolation.

(ii) Integrate the MMPDE from ¢t = ¢, to t = t, + At,, using the backward Euler
scheme with variable step sizes. More than one sub-step may be necessary before
t =t, + At, is reached. When this happens, the monitor function is updated from

mesh to mesh via linear interpolation. The obtained mesh is denoted by z"*!.

(iii) Integrate the physical PDE over a fixed or variable step. The mesh and mesh
speed at the intermediate stages are calculated through

t—tn oy tnt Aty —t

(iv) When a variable step size is used in step (iii), the physical PDE may actually
be integrated over a smaller step At, < At,. In this case, the mesh at the actual
new time level ¢, := t, + At,, should be recalculated as z"+! := z(t, + Atn) before
marching on to the next time step.

v) Go to the next step with either the fixed step size or At,,; predicted in (iii) by
Go to th t st ith either the fixed st i At dicted in (iii) b
the physical solver.

It is emphasized that more than one sub-step in (ii) for integrating the MMPDE is often
necessary. This is because the time scale of the MMPDE or the mesh movement relies on
the choice of 7 and is often different from the time scale of the physical PDE. Time step
At,, predicted by the physical solver, is thus inadequate for integrating the MMPDE,
and a different (and often smaller) time step should be used to maintain the stability
and accuracy of mesh movement. Following [13], we impose the condition At ., <
min{At,/3,0.17} on the sub-step sizes. Under this condition, at least three sub-steps are
taken in step (ii), and the scaled step for mesh movement At .1 /7 is less than 0.1.

In our computation we take 7 = 10~2 and integrate the physical PDE using the third
order singly diagonally implicit Runge-Kutta (SDIRK) scheme [5]. An error estimate
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e, provided by the SDIRK scheme as a by-product, is used for controlling the step size
according to the standard technique in the context of numerical ODEs, viz.

tol
At, 1 = At, min (4,max <0.1,0.84 ” (ﬁ )) ,
€|loo

where |||« is the maximum norm of e and the tolerance tol is taken as 10S.

2.2 Monitor Functions

The key to the success of the above described mesh movement method is to define an
appropriate monitor function g. Inappropriately chosen monitor functions can result in
wrong mesh concentrations and also make the MMPDE difficult to integrate.

2.2.1 Monitor functions based on solution gradients

One of the most commonly used, one dimensional monitor functions is the arc-length

9= \/1+u%’ (5)

where u, = (0u)/(0z), which tends to concentrate mesh points in regions where the

monitor function

solution gradient is large. This seems reasonable and intuitive, because more mesh points
are concentrated in the regions where the solution changes significantly. Another and
perhaps more important feature is that the monitor function is much smoother than
other monitor functions based on higher order derivatives. Thus, the corresponding mesh
equation can be easier to integrate, see [2] for the comparison study of the arc-length
and curvature monitor functions. However, it should be pointed out that the error of a
numerical approximation is often related to higher order derivatives of the solution, and
thus the arc-length monitor function may not lead to optimal mesh adaption and can
even fail for some cases.

2.2.2 Monitor functions based on interpolation error indicators

It is clear that monitor functions must be computed based on some sort of error estimates.
The comparison study in [3, 4] for two dimensional mesh movement suggests that the
interpolation error estimate serve the purpose best in terms of efficiency and ability to
accurately predict the large error regions where higher mesh concentration is needed.
Following the two dimensional study in [4], we compute the interpolation error esti-
mate and define the monitor function as follows. Denote by p”(z) the piecewise linear
polynomial connecting points (z;,u;), j = 0, ..., J, where z; is a mesh point and u; is an
approximation of the solution at this point. Let I; = (z;, 1), Tj11/2 = (¥ + Tj41)/2,
and duji1/2 = (uj41 — u;)/(2j41 — ;). Consider node z; and its two neighboring cells
I;_; and I;. Compute the linear polynomial p;(z) in I;_; U I; which passes through
(2j-1/2,duj_1/2) and (x;41/2,duji1/2). Obviously p; can be regarded as the derivative of

6



some quadratic interpolation polynomial (say p®) in I;_; U I;. Then the error indicator
is defined as

1 2
o1 i |
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where |I;_;| and |I;| denote the lengths of I; ; and I;, respectively. Accordingly, the
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monitor function is computed as

g9i =/ 1+¢j. (7)

2.2.3 Control of mesh adaption

It should be noted that the aforementioned monitor functions lack a mechanism to ex-
plicitly control the mesh adaption. Indeed, the monitor functions may over- or under-
concentrate mesh points in the region of large solution variations or errors, upon the
distribution of the solution gradient or the error indicator. Since the distribution of the
solution gradient or the error indicator is different for different problems, the degree of
mesh concentration will be different even if the same monitor function is used for solving
these problems. In this sense, the monitor functions defined above are not robust.

A common remedy is to introduce the intensity parameter « into the monitor function.
For example, the arc-length monitor function can be modified as

g=+/1+aul.

Interestingly, Beckett and Mackenzie [1] introduce
g =14+ alug,|™,

where m is an integer and «a is computed automatically through

1
0= ——""
< ugeH/™ >

and < - > denotes the average. They consider finite difference solution of a singularly
perturbed problem and obtain a uniform convergence rate.
Motivated by the idea of Beckett and Mackenzie, we define

B
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g=1+av, a=
where v = /1 4+ u2 — 1 for the gradient based monitor function or v = /1 + €2 —1 for the
monitor function based on the error indicator, and § € (0,1) is a user defined parameter.
It is easy to see that when v &< v >, g & 1/(1 — ) and a nearly uniform mesh results.
Note that we use v = 4/1 4+ u2 — 1 instead of v = |u,| to avoid the non-smoothness at



uz = 0. (Note that function |z| is non-smooth at = 0.) Introduction of parameter
allows us to control the mesh concentration. Indeed, it is not difficult to verify
. folgda:— I ozfolvd:c

Jy gdz Jy gdz

In words, S is a good indicator of the percent of mesh points concentrated in the region

B
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of large v or g.

2.2.4 Smoothing of Monitor functions

It is common practice to smooth the monitor function in moving mesh methods. This is
because the computed monitor function is often very non-smooth. At the same time, a
smoother monitor function leads to a smoother mesh and also makes the MMPDE easier
to integrate. In the spatial direction, we apply the low-pass filter four times to g,

1 1

1
9i < 791+ 59 + 795+, (10)

where g; = g(z;,1).

We also found that temporal smoothing of the monitor function is often useful. This
is especially true for the case of generating the initial adaptive mesh using the MMPDE
approach, where the temporal smoothing helps to obtain convergent meshes. We use

g" +— 0.29"' +0.8¢", (11)

where ¢" = g(z,t,), in our computation although this has only a minor effect on time
accurate integration.

2.3 Two-layer Mesh Movement

The efficiency of the moving mesh method can further be improved when combined with
a two-layer mesh movement strategy [13]. With this strategy, the mesh movement is
performed on a relatively coarse mesh whereas the physical PDE is solved on a finer mesh
which is obtained from the coarse mesh via interpolation or a refinement procedure. This
is reasonable since, unlike the physical solution, the locations of mesh points do not have
to be calculated to high accuracy. A similar idea has been used by Fiedler and Trapp
[9] for the dynamic generation of adaptive meshes using an elliptic differential equation
system.

We use here a simple relation between the coarse and fine mesh. Denote the coarse
mesh by {z$,j = 0,...,J°} and the fine mesh by {z;,j = 0,...,J}. They are related
through the projection

T =Tych), J=0,..,J° (12)

where the array JC is defined as
JC(j)=75-JM, j=0,..,J° (13)
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with a prescribed integer JM. (Note that J and J¢ must satisfy J = J¢- JM.) This
relation actually defines the (j - JM)th node of the fine mesh as the jth node of the
coarse one. To capture fine structures of the physical solution, the monitor function is
computed on the fine mesh and then projected via area averaging to the coarse mesh.
Having obtained the new coarse mesh by solving the MMPDE, we compute the fine mesh
at the new time step via linear interpolation.

Note that the coarse mesh cannot be chosen too coarse to catch basic features of
the physical solution. Our experience shows that choices JM = 2, 3,4 can often lead to
accurate results and good efficiency.

3 A Numerical Example

In this section numerical results obtained with the moving mesh method for model problem
(1) are presented to demonstrate the basic features of the method. The Dirichlet boundary
conditions at the left and right ends * = 0 and x = 1 are chosen such that the problem
has the exact solution

1 z—t 1 x T+t
u(zx,t) = —erfc | —— | + - ex (—) erfc | —— |, 14
(0.0) = o (£ ) o fowp (e (221 (14)
where erfc(z) is the complementary error function. Note that this exact solution is singular
at t = 0. To avoid this problem, we start the integration at ¢ = 10~% and stop at t = 1.
All the moving mesh computations start with an adaptive initial mesh, which is obtained

by solving the MMPDE with the analytical initial solution until the Ly norm of the mesh
speed is less than 10 ¢. The error is measured as

lelll= [ llut2) = weom (o) e, (15)

where ||u(-,t) — u®™(-,t)||z2 denotes the Ly norm of the error at time ¢t. The CPU time
is listed in seconds on a single MIPS 300MHZ R12000 processor of SGI Origin2000.

First of all, we show in Fig. 1 the results obtained with uniform meshes to demonstrate
the numerical difficulty in solving this simple model problem. Fig. 1a shows the computed
solution obtained with 5121 uniform nodes for the case D = 10 °. The computation takes
3407 seconds of the CPU time and has the error |||e||| = 2.74 x 1073. The convergence
history against the number of nodes is plotted in Fig. 1b for two cases, D = 0.01 and
D = 107°. We can see that for the smooth case with D = 0.01, uniform meshes lead to
very accurate results even for small numbers of nodes, and the second order convergence
of the method (using central finite differences) is clear. However, for the difficult case with
D = 107, the situation is different. Reasonably accurate solutions cannot be obtained
with small and even intermediate numbers of nodes. In fact, oscillations are visible behind
the sharp front in the computed solution shown in Fig. la where 5121 nodes are used.
The second order convergence is shown only for large numbers of nodes.
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Fig. 2 shows a typical result obtained using the moving mesh method with 81 nodes for
the case D = 10 . The monitor function based on the interpolation error indicator is used
and the mesh concentration parameter is taken as 8 = 0.5. The solution at various time
instants and the mesh trajectories clearly show the ability of the moving mesh method to
catch the moving front while maintaining sufficient mesh points in the front region. The
computation takes 79.3 seconds of the CPU time and the error is ||le]|| = 4.72 x 10~%.
Note that to get this level of error, more than 10241 uniform nodes have to be used and
more than a factor of 65 CPU time is needed.

In Fig. 3 we plot the solutions obtained with the monitor functions based on the
solution gradient and the interpolation error indicator. For both cases, the moving front
is caught well, the mesh points are concentrated in the front region, and very mild os-
cillations can be seen in the solution. Comparatively, the monitor function based on the
interpolation error indicator leads to more accurate results than the gradient based one
does. It can also be seen that the mesh points are concentrated in different regions. For the
gradient based monitor function, the points are concentrated and distributed uniformly
throughout the region of large gradient, whereas the monitor function based on the error
indicator results in more concentration at the two ends (where the solution curvature is
large) than the middle of the large gradient region. This indicates that the gradient based
monitor function concentrates mesh points in the wrong region. Fortunately, since the
layer is very thin and the large error regions are very close to the large gradient region, the
spatial smoothing of the monitor function helps to maintain enough mesh concentrations
in the large error regions and therefore reasonably accurate solutions are obtained.

Next we demonstrate how mesh adaption (concentration) can be controlled with pa-
rameter 5. We recall that 8 indicates the percent of mesh points concentrated in the
region of large v or g. To see this, we define the actual percent of mesh points concen-
trated in the large g region as the ratio R of the number of the mesh points at which the
value of the monitor function is strictly greater than its average to the total number of
the mesh points. R is shown against time in Fig. 4 for various values of 5 and for the two
monitor functions. The results clearly show that R = [, especially for the cases with 161
nodes. In other words, the control of mesh concentration defined in (8) is very effective,
namely, a smaller value of 3 leads to lower mesh adaptivity while a larger value results in
higher mesh concentration.

We show in Fig. 5 the computed solutions obtained with the monitor functions based
on the solution gradient and interpolation error estimate and with /without concentration
control. Since a relatively small number of nodes is used in the computation, there are
not enough nodes concentrated in the sharp front area for both the case without control
and the one with 8 = 0.5. As a result, oscillations are visible behind the front, especially
when the gradient monitor function is used. On the other hand, when § = 0.8 is used,
more nodes are concentrated in the front area and both the magnitude of the oscillation
and the error are reduced considerably.

We list in Table 1 the error and CPU time for the computations with various fixed
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and moving meshes for the two cases with D = 1072 and D = 1075. It can be expected
that the central finite difference discretization on fixed and moving meshes leads to a
second order convergence rate. However, this may not occur until the number of nodes
is large, depending on the difficulty of the numerical approximation of the underlying
problem. For the easy case D = 1072, both fixed and moving meshes lead to a second
or nearly second order convergence rate in the considered range (from 41 to 321) of the
number of nodes. However, the situation is different for the more difficult case D = 107°.
In this case, uniform meshes lead to a very slow convergence rate in this range of mesh
nodes, whereas moving meshes maintain almost the same convergence rate as in the case
D =102. (The second order convergence rate can be achieved with uniform meshes for
large numbers of nodes, see Fig. 1b.)

Finally we investigate the efficiency improvement by the two-layer mesh movement.
We list in Table 2 the results obtained using the two-layer mesh movement technique with
a coarse mesh of 41 nodes. We note that in this case, the coarse (moving) mesh is fixed
and only the mesh used for solving the physical PDE is refined while the convergence
is considered. The coordinate transformation determined by the moving mesh can be
thus regarded as almost fixed. As a consequence, the second order convergence can be
expected to occur even for small numbers of nodes. Indeed, the results in Table 2 show
clearly the second order convergence. It should be emphasized that unlike the case with
uniform meshes, the convergence rate does not deteriorate with D. It can also be seen from
Tables 1 and 2 that both the efficiency and convergence rate of the moving mesh method is
improved significantly with the two-layer mesh movement strategy. For instance, the two-
layer mesh movement with J¢ = 41 and J = 161 leads to a result for the case D = 107°
as accurate as that obtained using the one grid movement with J = 161, but the former
requires only about 75% of the CPU time used by the latter. Moreover, the percent of
the CPU time used for moving the mesh is reduced from 50% for the one-grid case to
only about 13% for the two-layer mesh movement.

To conclude this section we summarize briefly the observations we made through
the simple advection dispersion equation. The key to the success of the moving mesh
method is to design an appropriate monitor function. The monitor function based on the
interpolation error indicator is more robust and leads to more accurate results than that
based on the solution gradient. This is consistent with the observations made in [3, 4]
for two dimensional problems. Mesh concentration can be controlled by introducing the
intensity parameter in the monitor function. The technique presented in section 2.3 seems
very effective. The two-layer mesh movement strategy not only improves significantly
the efficiency of the moving mesh method but also helps recover the exact second order
convergence rate on moving meshes.
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Table 1: Results with fixed and moving meshes for model problem (1).

D | Fixed/Moving | Mesh | |||e||| (ratio) | Total CPU
le-2 Fixed 41 | 8.75e-3 1.2
81 | 3.24e-3 (2.6) 2.1

161 | 9.50e-4 (3.4) 4.5

321 | 2.36e-4 (4.0) 10

Moving 41 | 1.13e-3 4.6

81 | 2.64e-4 (4.3) 7.8

161 | 7.92e-5 (3.0) 19

321 | 2.34e-5 (3.1) 52

le-5 Fixed 41 | 1.22e-1 2.3
81 | 9.88e-2 (1.2) 5.9

161 | 7.84e-2 (1.3) 20.1

321 | 5.96e-2 (1.3) 65.9

Moving 41 | 1.77e-3 43.1

81 | 4.72e-4 (3.8) 79.3

161 | 1.67e-4 (2.8) 217.6

321 | 5.88e-5 (2.8) 465.4

4 Applications

In this section, we apply the moving mesh approach and the implementation strategies
to the simulation of a selection of groundwater problems, including chemical transport
and reaction, water infiltration into soil, and the coupling of density dependent flow
and transport. All of these examples involve sharp moving fronts. We use the monitor
function based on the interpolation error indicator and take the concentration parameter
as # = 0.5. All of the presented results are obtained with 81 moving nodes. For Examples
2 and 3, there are no exact solutions available. For comparison purpose, a reference
solution is also presented which is obtained using the two-layer moving mesh method
with J = 321 (the number of the physical mesh points) and J¢ = 41 (the number of the
moving nodes).

4.1 Advection dominated chemical transport and reaction

In subsurface, mass in the form as ions, molecules, or solid particles undergoes multiple
processes, including transport processes such as advection and dispersion and chemical,
nuclear, and biological processes. Acid-base reactions, solution, volatilization, and pre-
cipitation, , solute reactions, oxidation-reduction reactions, hydrolysis reaction, isotropic
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Table 2: Results with the two-level mesh movement for model problem (1). The moving
mesh has 41 nodes or J¢ = 41. See Table 1 for more results obtained with JM = 1.

D | JM | Physical Mesh | |||e||| (ratio) | Total CPU | (mesh CPU)/(total CPU)
le-2 | 1 41 | 1.13e-3 4.6 0.50

2 81 | 2.57e-4 (4.4) 7.4 0.31

4 161 | 6.78e-5 (3.8) 14.2 0.16

8 321 | 1.90e-5 (3.6) 23.3 0.10
le-5| 1 41 | 1.77e-3 43.1 0.50

2 81 | 4.21e-4 (4.2) 109.4 0.20

4 161 | 1.14e-4 (3.7) 161.7 0.13

8 321 | 3.04e-5 (3.7) 306.3 0.07

reactions, adsorption and desorption are examples of chemical, nuclear, and biological
processes. An accurate description of these behaviors is prerequisite to the successful
groundwater protection and management. One of the mathematical models of these be-
haviors can be written as the so called advection-dispersion-reaction (ADR) equation

ot  Ox

—V=- 1
o) -V ARC, (16)

oc 0 (Da(,*) oC
oz

where C is the concentration of a certain type of chemical, D is the dispersivity, V is
the Darcy velocity, R is the retardation factor, and A is the reaction factor. We take the
physical parameters as D = 1075, V = 1, R = 1.1, and A = 1.1. The computation is
performed on interval (0, 1) with the initial and boundary conditions

O(z,00=0, C(0,8)=1, C(1,t) =C" (17)

where C* is taken as the value of the exact solution at £ = 1. The exact solution to this
problem is known [17]

( YV + 4D)\Rx) (:c S TE 4D,\Rt/R)
exp | — erfc

2D VADt/R
VATE 4D)\R:c) ke (:c +VVIE 4DARt/R>

2D /4Dt/R

Fig. 6 shows the numerical solution at various time instants obtained with the mov-

+exp<

ing mesh method. Also given is the the analytical solution for comparison. The figure
demonstrates that the MMPDE method provides accurate tracking of the sharp moving
front.
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4.2 Nonlinear infiltration in unsaturated soil

The movement of water through unsaturated soil or vadose zone infiltration is of interest
with hazardous and radioactive waste transport and storage in environmental protection
and rainfall run-off problems in watershed management. The movement of water moisture
in soil is another common problem in groundwater hydrology. The modeling of infiltration
is complicated by the variation in both water pressure and saturation, and the presence
of a nonlinear relationship between saturation and physical parameters such as hydraulic
conductivity. The most common mathematical description of moisture movement during
infiltration is the Richard equation [6]

09 9 (D 0 80> _ 9K (9) (18)

- \PO o | ——5

where 2z is the vertical coordinate, 6 is the water content, D(f) is the moisture diffusiv-
ity defined as a function of #, and K (#) is the unsaturated hydraulic conductivity, also
depending on 6.
We consider the case where z € (0,1) and ¢ € (0,1) with D() = 26, and K(§) = 6°
as used in [6]. The initial and boundary conditions are chosen as
06
6(z,0) =0, 6(0,t) =1, &(l,t) =0. (19)
Fig. 7 shows the computed saturation and water flux at several time instants. No
analytic solution is available for this problem. The water flux is calculated according to

the formula

q:—KVHz—K<1+@> =—K(1+

o K d0> | (20)

Ddz
where h is the water head.

To demonstrate the ability of the moving mesh method to capture sharp fronts, we
reduce the diffusivity to D = 2x 1076 and increase K by a factor of 2.5. This corresponds
to the situation where water moves in unsaturated clay or highly impermeable soil. The
inflow boundary condition at ground surface is also modified to a time dependent condition
6(0,t) = e~t. Fig. 8 presents the computed saturation at different time instants and the
location of the sharp moving front. One may notice that the movement of the front is not
uniform with time because of non-linearity of the problem.

For comparison, a reference solution is also plotted in Figs. 7 and 8. These results,
particularly the location of the moving front, proves that the moving front is captured
very well by the moving mesh method with a relatively small number of nodes.

4.3 Coupling of density dependent flow and transport

The last example is a coupled problem for flow and brine transport in porous media. This
problem has been analyzed by Zegeling et al. [20]. It deals with the interaction between
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the flow and brine concentration, where the salt concentration is high and influences the
fluid density. On the other hand, the fluid density has effect on the flow, and then the
brine movement or transport. This isothermal, single phase, two component saturated
flow model in one-dimensional space is given [20] as

oP ocC _ 0O(pv)
wpB—or twpy g =——5 =
oC oc 0 oC
— = —pv—+ — | pAJv|= 21
where the velocity is related to pressure through v = —ﬁ(%—i + pg) and the equation of

state is p = poexp(B(P — Py) + yC). Here, py is the constant reference density, P, is the
constant reference pressure, § is the constant compressibility coefficient, 7 is the constant
salt coefficient, k is the permeability, g the gravity, u the viscosity, and A the dispersion
length.

Using the same values of the parameters (listed in Table 1 of [20]) and the same initial
and boundary conditions we obtain similar results to those in [20], and for this reason we
do not present them here. Instead, we consider here a more interesting case. We note
that the initial and boundary conditions used for the first example of [20] are

P(z,0)=171-2z)4+=z, C(z,0)=0

and
oC

P(0,t) =17, P(Lt)=10, C0,)=1, Z(1,1)=0.

Consider a case where the left boundary conditions are made to be time dependent, i.e.,
P(0,t) = 1.7¢7%%  C(0,t) = e7 3.

The computed pressure and concentration, as well as the reference solution, at ¢ = 0,
0.1, 0.2, 0.3, 0.4, and 0.5 are shown in Fig. 9. Once again the results demonstrate the
capability of the moving mesh method to capture sharp fronts for coupled problems.

5 Conclusions

A moving mesh method based on the so-called moving mesh PDE, introduced in [14],
has been presented. Our emphasis is on the important implementation strategies, includ-
ing the construction of the monitor function based on the interpolation error indicator,
control of mesh concentration, and two-layer mesh movement. An advection-dispersion
equation, a typical model problem in groundwater simulation, is used to demonstrate the
effectiveness of the implementation strategies. Of particular interest, the strategy of con-
trolling the mesh concentration is effective, and the two-layer mesh movement strategy
improves significantly the efficiency of the moving mesh method.
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Numerical results are presented for three application examples in the field of groundwa-
ter. The first deals with advection dominated contaminant transport, the second example
is a nonlinear infiltration problem, and the last example is a coupled density dependent
flow and transport problem. All three examples involve sharp moving fronts, and all of
them contain high degree of difficulty for the numerical solution. The excellent results
we obtained clearly demonstrate the capability of the MMPDE method and indicate the
high potential of this method in handling difficult groundwater modeling problems.

Although only one dimensional problems are addressed here, our ultimate goal is to
apply this approach to realistic two- and three-dimensional groundwater systems. Our
future research includes the detailed comparison of the moving mesh approach with other
adaptive mesh methods such as refinement and the application to more complex ground-
water systems with multiple species, reactions, and moving chemical fronts.
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0074240 and the Kansas Geological Survey.
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Figure 1: Numerical results obtained with uniform meshes for model problem (1). (a):
The computed solution obtained with 5121 nodes at time ¢ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0
for the case D = 1075. (b): Converegence history for the cases D = 107® and D = 1072.
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Figure 2: A typical result obtained using the moving mesh method with 81 nodes for
model problem (1) with D = 107°. (a): The computed solution at time ¢t = 1074, 0.2,
0.4, 0.6, 0.8, and 1.0. (b): The mesh trajectories.
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Figure 3: Computed solutions obtained using 81 moving nodes and the monitor function

based on either (a) the solution gradient or (b) the interpolation error indicator for model
problem (1) with D = 107°.
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(a) interpolation error and 81 nodes (b) interpolation error and 161 nodes
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Figure 4: R, the ratio of mesh points at which the value of the monitor function is strictly
greater than its average to the number of mesh points is shown as function of time for
various values of 3, two numbers of mesh points, and the monitor functions based on the
error indicator (a,b) and the solution gradient (c,d).
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Figure 5: Results obtained with a mesh of 41 nodes for model problem (1). (a): Arc-length
g without control, |||e||| = 4.48¢ — 3; (b): Arc-length g with 8 = 0.5, |||e||| = 4.42e — 3;
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Figure 6: The computed and exact solutions at time ¢ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 for
the chemical reactive and retardation equation. The computed solution is obtained using
the moving mesh method with 81 nodes.
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Figure 7: The computed saturation (a) and infiltrating water flux (b) at time ¢t = 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0 with 81 moving nodes for the nonlinear infiltration problem with
D =20 and K = 63.
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Figure 8: Numerical results for the nonlinear infiltration problem with sharp fronts. (a)
Saturation at time ¢t = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. (b) The computed location of the
moving front as function of time.

@ (b)
17 T 12 T
reference reference
comput.  + comput.  +
16 1
15 b
<
o 14T 4 s
5 g
2 £
¢ g
=13t B §
3
12+ 1
11 b
" . . . .
0 0.2 0.4 0.6 0.8 1

Figure 9: The computed pressure (a) and concentration (b) at ¢ = 0.0, 0.1, 0.2, 0.3, 0.4,
and 0.5 for the coupled fluid pressure and concentration problem.
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