
A Study of Cell{Center Finite Volume Methodsfor Di�usion EquationsWeizhang Huang � and Andrew M. Kappen yAbstractWe discuss four cell{center �nite volume schemes for di�erencing di�usionequations. Numerical results are presented for comparing the performance ofthese schemes on a number of meshes with varying degrees of skewness. It isshown that both the new continuous edge 
ux scheme and the existing vertex
ux scheme are very stable and generate second order or nearly second orderaccurate results on moderately and highly skewed meshes. The other twoexisting schemes su�er from accuracy and stability problems on these typesof meshes.AMS(MOS) 1991 Subject Classi�cation. 65M99, 35K57Key Words. �nite volume methods, di�usion equationAbbreviated title. Cell{center Finite Volume Discretizations1 IntroductionAlthough the ideas underpinning �nite volume (FV) methods have been well under-stood since their introduction by Varga in 1962 [16], it took the research of Jamesonand Caughey [5] and Ni [13] to popularize their application in solving steady stateEuler equations. Since that time, FV methods have developed into e�cient, robustcodes used widely in the aerospace industry for solving 
uid dynamics problems.The common method behind all FV formulations is integrating a di�erential equa-tion over a set of cells partitioning the physical domain 
. These cells are typi-cally quadrilateral or triangular when 
 � R2 and hexahedral or tetrahedral when
 � R3. The integration is accomplished by using Gauss's theorem to transformthe volume integral over the cell into a surface integral over the cell boundary beforediscretizing it.FV methods have become popular for good reasons. They are 
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directly on the physical domain rather than on the computational domain throughcoordinate transformations, they can easily be used with adaptive mesh strategies.The ability to improve accuracy through adaptive meshes is proving essential toproducing accurate, e�cient computational 
uid dynamics codes [8].There are three basic classes of FV methods, distinguished by where unknownvariables are stored in relation to the cell. These are cell{center, cell{vertex, andcell{edge methods. Cell{center methods are by far the most popular due to theirease of implementation and the close association of the cell residual to the centerunknowns [11]. Morton et al. [10, 11, 12] have advocated cell{vertex methods inwhich the unknowns are held at the mesh nodes. The biggest advantages of theirmethod are due to the small size of the di�erence stencil involved when a residualequation is de�ned. They show that this makes cell{vertex schemes less sensitive tomesh distortion than cell{center schemes, but admit that the edge averages used intheir cell{center scheme are too simplistic to react to mesh distortions [11]. Cell{edge schemes are relatively uncommon in the literature.We consider in this paper the application of cell{center methods to the numericalsolution of di�usion equations. This issue has been addressed before by severalresearchers, for examples see [2, 6, 7, 9], and a variety of methods can be found in theliterature for di�erencing di�usion related terms. Most researchers have presentedresults indicating some degree of success for their application examples. However,we should note that many of these methods have been used only on orthogonal ornearly orthogonal meshes and have never been studied analytically or numericallyon meshes with higher degrees of skewness. Furthermore, the di�erences amongsome of these methods are very subtle and little work has been done to comparetheir performance [6, 9]. This lack of comparative research may be the reason thatnone of these methods have seen clear dominance over the others in application. Toadd to the confusion, di�erent methods are advocated by recently published books[2, 10] and review [8] for use in di�erencing di�usion terms.The objective of this paper is twofold: �rst a new scheme is derived and thenits performance is examined along with three other existing schemes. The newscheme, called the continuous edge 
ux scheme (CEFS), is derived using an edge 
uxcontinuity condition, motivated by the work of Morel et al. [9]. Unlike the methodof [9], however, this new scheme does not need to use edge unknowns togetherwith center unknowns. Despite this di�erence, it will be shown that the CEFS hascomparable performance with the scheme presented in [9]. In addition, we show thatfor cases with continuous materials, the CEFS is closely related to the Taylor seriesexpansion scheme (see below). The three existing schemes selected for investigationare the vertex 
ux scheme (VFS) presented by Frink [3] and having much in commonconceptually with the center{scalar nodal{
ux (CN) mimetic �nite di�erence schemedeveloped by Hyman et al. [1] and Shashkov [14], the center 
ux scheme (CFS)discussed extensively in [2] (and references therein), and the Taylor series expansionscheme (TSES), a classic scheme investigated in [6] and also discussed in [10]. Thesedi�erence{based methods are selected because they can easily be implemented ongeneral meshes with di�erent types of cells and can be extended easily to threedimensions. They are also second order approximations on orthogonal meshes and2



reduce to �ve point �nite di�erence schemes for the Laplace operator. In general,di�erence{based methods are favored by many researchers because they are muchsimpler than �nite element{based methods and more 
exible than methods based oncoordinate transformations (e.g. see [2, 10]). The comparative study is conductedwith a model convection problem on a carefully chosen selection of meshes havingvarying degrees of skewness.The remainder of this paper is organized as follows. Section 2 will describe thegeneral formulation of the cell{center FV discretization for di�usion equations. Thefour schemes are described in detail in section 3. Their features and eigenvalue ap-proximation properties for the Laplace operator on a uniform mesh are discussedin section 4. In section 5, a two dimensional model is given and used for the testexample. Numerical results obtained with the four schemes are presented and ana-lyzed for the model problem using four types of meshes. Finally, section 6 containsconclusions and remarks.2 Cell{Center Finite Volume MethodIn this section we brie
y describe the cell{center �nite volume method applied totwo dimensional di�usion equations. To be speci�c, we consider an equation in theform @u@t = r �G+ f; (x; y) 2 
G = Dru; (1)where 
 is a two dimensional simply connected domain, D = D(x; y; t) is the di�u-sion coe�cient matrix (symmetric and positive de�nite), f = f(x; y; t) is the sourceterm, and G is the di�usive 
ux. We assume that (1) is supplemented with appro-priate initial and boundary conditions and the corresponding initial boundary valueproblem is well posed.Let ~r = [x; y]T. Denote by ~rX the position of a point labeled with X and by uXthe approximation to the unknown function u(~r; t) at point X, i.e. uX � u(~rX; t).(Thus uX is a function of time.) We also use the notation ~rX�Y = ~rY � ~rX for thevector from X to Y . Point labels in relation to cell center C are shown in Figure 1.The basic idea behind the cell{center �nite volume method is to de�ne unknownvariables at cell centers and to integrate equation (1) over each cell. Take the cellV (with center C) in Figure 1 as an example. After dividing by the cell area AC ,integration leads to 1AC ZV @u@t dV = 1AC ZV r �GdV + 1AC ZV fdV: (2)Approximating the left hand side term and the source term is standard,1AC ZV @u@t dV � duCdt and 1AC ZV fdV � f(~rC ; t): (3)3
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Figure 1: Typical 2D control volume (quadrilateral) and point labelsFor the di�usion term, we use Gauss's theorem and approximate the resulting lineintegral with the midpoint rule. We have1AC ZV r �GdV = 1AC I@V G � ~ndl� 1AC (Ge � S~rse�ne +Gn � S~rne�nw +Gw � S~rnw�sw +Gs � S~rsw�se) ; (4)where S is the skew matrix S = " 0 1�1 0 #. Substituting (3) and (4) into (2), weobtainduCdt = 1AC (Ge � S~rse�ne +Gn � S~rne�nw +Gw � S~rnw�sw +Gs � S~rsw�se) + f(~rC ; t):(5)Thus, the key to di�erencing di�usion equations is approximating edge center 
uxesnormal to cell edges.3 Approximation of Di�usive FluxFour schemes are described in this section for computing the di�usive 
ux at edgecenters. They are the continuous edge 
ux scheme (CEFS), the vertex 
ux scheme(VFS), the center 
ux scheme (CFS), and the Taylor series expansion scheme (TSES).They are named here according to the manner with which the edge center 
uxes arecomputed. For instance, in the VFS, the 
ux is �rst computed at vertices and itsvalue at edge centers is obtained by averaging.3.1 The Continuous Edge Flux Scheme (CEFS)The �rst scheme is a new one derived using the edge 
ux continuity condition,motivated by the work of Morel et al. [9]. In [9], a scheme is developed for calculatingdi�usive 
uxes based on the continuity of 
uxes crossing cell edges. This schemecan be applied to problems involving material discontinuities, because as long as4



the discontinuity occurs along cell edges the di�usion coe�cient matrix may becalculated unambiguously at the cell center without a�ecting accuracy. This schemehas been shown to be second order and to work well on a selection of skewed mesheswhen combined with a �x{up procedure invoked for highly skewed cells. The maindisadvantage of the method is that in addition to center variables, it employs twoadditional sets of unknown variables stored at edges. This increases the complexityand cost of implementing the scheme.To avoid this disadvantage we propose a derivation called the CEFS schemewhich uses the 
ux continuity condition of [9] in combination with approximationof the values of the unknown function at the vertices. To be speci�c, let us considerthe computation of Ge. We begin with computingru�e and ru+e , the two one{sidedgradients to the edge ~rse�ne at e. Approximating directional derivatives with �nitedi�erences, we have ( ru�e � ~rse�ne � une � useru�e � ~rC�e � ue � uC (6)and ( ru+e � ~rse�ne � une � useru+e � ~rE�e � ue � uE (7)The systems (6) and (7) can be solved for ru�e and ru+e , respectively, as functionsof une, use, ue and unknown variables uC and uE. The formulas areru�e = 1a [(ue � uC)S~rse�ne � (une � use)S~rC�e] ;ru+e = 1b [(ue � uE)S~rse�ne � (une � use)S~rE�e] ; (8)where a = ~rC�e � S~rse�ne and b = ~rE�e � S~rse�ne.Consider now the 
ux continuity condition. Denote by G�e and G+e the C{ andE{side di�usive 
uxes at e, respectively. From the de�nition, these 
uxes can beexpressed by G�e = D�e ru�e ; G+e = D+e ru+e ; (9)where D�e (or D+e ) is the limit of the di�usion coe�cient taken as the point ap-proaches e from the C (or E) side. The di�usion 
ux continuity condition at theedge center e is then given by G�e � ~n = G+e � ~n (10)or D�e ru�e � S~rse�ne = D+e ru+e � S~rse�ne: (11)Substituting (8) into the above condition, we haveb h(ue � uC) (S~rse�ne) � �D�e S~rse�ne�� (une � use) (S~rse�ne) � �D�e S~rC�e�i == a h(ue � uE) (S~rse�ne) � �D+e S~rse�ne�� (une � use) (S~rse�ne) � �D+e S~rE�e�i :(12)5



This equation can be solved for ue as a function of une; use; uC, and uE. If valuesune and use are known (in the sense that they can be expressed in terms of unknownvariables), then ue can be obtained and thus ru�e and the edge center 
ux Ge �S~rse�ne � G�e � S~rse�ne appearing in (5) can be calculated accordingly.For the computation of use and une, we could use a simple average. Instead, weuse the slightly complicated but more accurate formulaune = uO +ruO � ~rne�O; (13)where O is the center of the cell with vertices C;E;NE, and N , uO = (uC +uE + uNE + uN )=4, and ruO is the computed gradient at O. The computation ofruO is carried out using the common device of writing (@u)=(@x) = div(u; 0) and(@u)=(@y) = div(0; u), applying Gauss's theorem to appropriate integrals over thecell, and approximating the resulting line integrals with the trapezoidal rule. Thisgives ruO = 1A �12(uE + uNE)S~rNE�E + 12(uN + uNE)S~rN�NE+ 12(uC + uN)S~rC�N + 12(uE + uC)S~rE�C� ; (14)where A is the cell area. The value of use can be calculated similarly.Like many other FV schemes, Neumann boundary conditions can be treatedtrivially. For Dirichlet boundary conditions, system (6) can, for instance, be usedfor solving ru�e when points ne; e; and se are on the boundary and C is inside thedomain. The edge 
ux is then calculated by Ge = D�e ru�e .As in the method of Morel et al. [9], the use of the 
ux continuity conditionguarantees that a net rate of energy 
ow across each cell edge is uniquely de�ned.This is essential to ensure the global energy conservation. Furthermore, if a materialdiscontinuity exits at a cell edge, the 
ux continuity gives the exact interface condi-tion. In this sense, the condition provides a physical cell interaction. On the otherhand, the computation of une and use in the CEFS is certainly not physical and thismay introduce additional errors for cases with material discontinuities. To see thesigni�cance of this e�ect, we note that the contributions of une and use to G�e �S~rse�nein (5) are proportional to (S~rse�ne) � (D�e S~rC�e) and (S~rse�ne) � (D+e S~rC�e), see (8).If D is a scalar multiple of the identity matrix and both ~rC�e and ~rE�e are per-pendicular to ~rse�ne, then une and use have no e�ect on the discretization. Fromthis observation, we can expect that the calculations of une and use will not a�ectsigni�cantly the robustness of the scheme on mildly to moderately skewed meshes.The CEFS has a nine point stencil for equation (1) when a general quadrilateralmesh is used. On an orthogonal mesh, it reduces to the standard �ve point �nitedi�erence scheme for the Laplace operator. Thus, the CEFS can be regarded as ageneralization of the standard �ve point �nite di�erence scheme on a non{uniformmesh. 6



3.2 The Vertex Flux Scheme (VFS)The second scheme to be described is the vertex 
ux scheme or VFS. It has beenused by Frink [3] and recommended by Mavriplis [8]. It is also interesting to notethat the VFS has much in common conceptually with the second order mimetic CN�nite di�erence scheme developed by Hyman et al. [1] and Shashkov [14]. The mainidea of this method is to �rst compute the gradient of u at the vertices and then tocalculate the di�usive 
ux at the edge centers by averaging.Speci�cally, the edge center 
ux Ge is computed as follows. First, the gradientof u at vertex ne (and vertex se) is computed. This is accomplished by taking theapproximation rune � ruO and computing ruO using (14). Then, the edge center
ux Ge is computed by averaging,Ge = De 12 (rune +ruse) ; (15)where De = D(~re; t).There exist two ways to treat Dirichlet boundary conditions. The �rst one is touse formula (14) to computerune at the boundary using the cell with verticesN , C,e, and nne. The second one is to use the same boundary treatment employed in theCEFS to directly compute the di�usive 
ux at the edge center e. Surprisingly, ourexperience shows that the second approach appears to be inconsistent with the VFSand produces inferior results on non{orthogonal meshes. Thus, our results re
ectthe use of the �rst boundary treatment.On a general quadrilateral mesh, the VFS has a nine point stencil with thecalculation for the PDE at C dependent on the unknown variable u at C and itseight neighbors. Interestingly, for the Laplace operator on a rectangular mesh, theVFS reduces to a skewed �ve point �nite di�erence stencil with dependency on thevariables at C and its four corner neighbors SE, NE, NW , and SW . Such a skewed�ve point �nite di�erence scheme has rarely been used in practice due to its inferioraccuracy in comparison with the standard �ve point �nite di�erence scheme. Infact, Kershaw [7] uses reduction to the standard �ve point �nite di�erence as acriterion for accepting or dismissing new schemes. Although the VFS fails to meetthis criterion, our numerical results show that it is still a highly e�ective scheme.3.3 The Center Flux Scheme (CFS)The third scheme is called the center 
ux scheme or CFS. It has been studied byseveral researchers and is discussed extensively by Ferziger and Peri�c in their book[2] (also see references therein). The idea behind this approach is to compute the
ux �rst at cell centers and interpolate it to edge centers.The �rst formula needed is the least squares approximation (interpolation) for uebased on uC and uE. Expanding u(~rC) and u(~rE) into Taylor series about ~r = ~re andminimizing the sum of the coe�cients of the �rst order derivatives in the expansionslead to ue = ~rTC�E~re�Ej~rE�Cj2 uC + ~rTE�C~re�Cj~rE�C j2 uE: (16)7



On a uniform rectangular mesh, this approximation is reduced to a simple two pointaverage. To compute edge center 
ux Ge, ruC and ruE are �rst computed using aprocedure similar to that used for equation (14). The di�erence is that we use herethe midpoint rule to approximate the related line integrals. The resulting formulafor ruC isruC = 1AC (ueS~rne�se + unS~rnw�ne + uwS~rsw�nw + usS~rse�sw) ; (17)where ue is obtained through (16) and the other edge center values are computedsimilarly. After ruC and ruE have been obtained, we can compute Ge once againusing (16), Ge = De "~rTC�E~re�Ej~rE�C j2 ruC + ~rTE�C~re�Cj~rE�C j2 ruE# : (18)Neumann and Dirichlet boundary conditions for this scheme can be treated inthe same way as the CEFS.The stencil for the CFS generally involves thirteen points. The dependency ison the unknowns at C, its eight neighbors, and four far neighbors EE, NN , WW ,and SS.3.4 The Taylor Series Expansion Scheme (TSES)The last scheme, referred to as the Taylor series expansion scheme or TSES, is theclassic approximation and has been studied extensively by Jeng and Chen [6] anddiscussed in [10].Unlike the VFS and CFS, the �rst step in this scheme is to approximate thefunction values at vertices ne and se by simple averaging,une = 14 (uC + uE + uNE + uN ) ;use = 14 (uC + uE + uSE + uS) ; (19)and then to compute the gradient rue (and therefore Ge) using the Taylor seriesexpansion. The obtained formula is similar to (14) but on a cell with vertices C, se,E, and ne.Like the CEFS, this scheme also gives a nine point stencil in general and the stan-dard �ve point �nite di�erence scheme for the Laplacian operator on an orthogonalmesh.Because of this similarity in stencil, it is interesting to see how the TSES is relatedto the CEFS. In fact, for the case where the di�usion coe�cient D is continuous,the gradient at edge center e obtained with the CEFS is exactly the same as thatobtained with the TSES, provided the same values for uC, uE, use, and une are used.To show this, we �rst note that the method used in the CEFS uniquely de�nes ru�eand ru+e regardless of the continuity of D. However, when D is continuous, we canshow that ru�e = ru+e � rue, where rue is the unique solution of( rue � ~rse�ne � une � userue � ~rC�E � uE � uC; (20)8



the gradients generated uniquely by the CEFS. Moreover, it is not di�cult to verifythat the solution of (20) is the same as the gradient produced by the TSES. Hence,we have proved our assertion.From this, we can conclude that when D is continuous, the only di�erence be-tween the CEFS and TSES is the way in which une and use are computed.4 Application to the Laplacian OperatorBefore looking at the full results of our numerical experiments using these four meth-ods, we brie
y examine how well each one performs in approximating the eigenvaluesof the Laplacian operator on a uniform mesh. For simplicity, we assume that theLaplacian operator is de�ned on the unit square with homogeneous Dirichlet bound-ary conditions imposed.Analytically, the Laplacian operator with these conditions applied has a set ofeigenvalues given by �(kx; ky) = (k2x + k2y)�2 for kx = 1; 2; 3; : : : and ky = 1; 2; 3; : : :,thus the smallest eigenvalue is � = 2�2. The eigenvalues of the approximationmatrix for each method are computed using Matlab, and the errors in the smallesteigenvalue for each case are presented in Table 1. Note that in the current case boththe CEFS and the TSES reduce to the standard �ve point �nite di�erence scheme,so only the CEFS results are presented.Table 1: Error in calculating the smallest eigenvalue of the LaplacianI � J CEFS CFS VFS4�4 0.9940 3.7392 7.86938�8 0.2524 0.9941 4.569412�12 0.1125 0.4469 3.172016�16 0.0634 0.2524 2.417824�24 0.0282 0.1125 1.6318It is easy to see that both the CEFS and CFS have second order convergencerates while the convergence of the VFS is only �rst order. The CEFS and the TSEShave a clear advantage in these results with errors far smaller than the other schemes.The lower order convergence of the VFS may be caused by its skewed nature and/orits inconsistency in stencils around the boundary. In fact, from Figure 2 we cansee that the VFS has a skewed �ve point stencil at the interior points but at theboundary cells its stencils have di�erent dependencies. For instance, along the eastboundary, the stencil at C involves C and its four neighbors NW , SW , N , and S.Figure 2 also shows the matrix patterns for the CEFS and the CFS. The CEFScan easily be seen to be most compact. We should note, however, that both theCEFS and the VFS have nine point stencils on a general mesh, and as will be seen inthe next section, a poor approximation to the eigenvalues of the Laplacian operator9
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Figure 2: Matrix pattern for VFS, CFS, and CEFS approximations to Laplace'soperator on a uniform orthogonal mesh.on a uniform mesh does not necessarily lead to a poor approximation to the solutionof the di�usion equation.5 Numerical ExperimentsWe present in this section the numerical results obtained with the four schemes fora model problem. This problem has been used by Shashkov and his coworkers fortesting their methods, e.g. see [14]. It is given by( ut = r � (Dru) + f; (x; y) 2 
u = g; (x; y) 2 @
 (21)where 
 is a bounded domain to be de�ned later and the matrix D is a rotation ofthe diagonal matrixK = " 1 + 2x2 + y2 + y5 00 1 + x2 + 2y2 + x3 # (22)by some angle �, orD = RKRT ; R = " cos(�) �sin(�)sin(�) cos(�) # : (23)The source function f , the boundary condition g, and the initial conditions arechosen such that the exact solution to the IVBP is u = e�2�2tsin(�x)sin(�y). Allof the results presented are obtained using � = �=4 in calculating the matrix D.For all computations, the system of ordinary di�erential equations resulting fromthe FV discretization of (21) is integrated in time from t = 0 to t = 0:01 using the�{method (� = 0:5) with a �xed time{step �t = 0:001. With this small time stepsize, the time discretization error in our results can be ignored compared to the errorfrom spatial discretization. The resulting system of algebraic equations from thisimplicit integration is solved at each time step using the BiCGstab2 [4, 15] iterativemethod (without special treatments such as scaling or preconditioning) until themean{square root of the residual is less than 10�8. Four di�erent types of meshesare used. The meshes and numerical results are described in the following sections.10



5.1 Uniform MeshInitial experiments were run using a uniform mesh for the physical domain 
 =[0; 1] � [0; 1]. The number of cell center unknowns in the x and y directions are Iand J respectively, and therefore the total number of mesh points is (I+1)�(J+1).Our numerical results are summarized in Table 2. In the table, the columnsrepresent errors and convergence ratios for the maximum and L2 norms as well asthe average number of BiCGstab2 iterations required per time{step.Although all of the methods tested show a clear second order convergence on theuniform mesh, the actual error magnitudes di�er greatly. As expected, the CEFSprovides the best approximation to the exact solution. In fact, the CEFS errorsare nearly one �fth as large as those of the VFS or CFS. Surprisingly, although theVFS is the poorest approximator of eigenvalues (having only �rst order convergence)for the Laplacian operator on the uniform mesh, it produces second order accurateresults which are comparable to those obtained with the CFS. The TSES producesthe same results as the CEFS on this mesh, so the TSES results are omitted fromthe table.From the table, we can also see that surprisingly that the CFS requires feweraverage iterations per time{step to solve the linear system resulting from the implicitintegration. The VFS is the second most e�cient method, while the CEFS is themost expensive.Table 2: Results obtained using uniform meshes on 
 = [0; 1]� [0; 1].maximum norm L2 norm average iterationsScheme I � J error ratio error ratio per time-stepVFS 8 � 8 1.49e-02 6.98e-03 2.016 � 16 3.85e-03 3.86 1.83e-03 3.81 3.032 � 32 9.68e-04 3.97 4.69e-04 3.91 5.064 � 64 2.40e-04 4.03 1.17e-04 4.00 11.0CFS 8 � 8 1.52e-02 7.45e-03 2.016 � 16 3.89e-03 3.90 1.92e-03 3.88 2.932 � 32 9.81e-04 3.96 4.81e-04 3.98 4.164 � 64 2.43e-04 4.04 1.19e-04 4.05 8.6CEFS 8 � 8 3.36e-03 1.66e-03 2.016 � 16 8.53e-04 3.94 4.09e-04 4.05 3.032 � 32 2.11e-04 4.05 1.01e-04 4.07 7.064 � 64 5.01e-05 4.20 2.35e-05 4.27 15.25.2 Sine Domain MeshThe second type of meshes we use are applied to a sine domain de�ned as 
 =f(x; y) j 0 � x � 1; 0 � y � Y (x)g where Y (x) = 1 + (sin(��x))=2 and � is a11



parameter. This domain has also been used for numerical experiments in [14]. Themesh is de�ned asxij = iI ; yij = jY (xij)J ; i = 0; 1; : : : ; I; j = 0; 1; : : : ; J: (24)This mesh is mildly skewed when � is smaller (such as � = 2) but can become veryskewed for large �. Two typical meshes for cases � = 2 and � = 6 are shown inFigure 3.The results obtained for the case � = 2 are listed in Table 3. Since this typeof mesh is only mildly skewed, all four schemes show second order convergence.However, unlike on the uniform mesh, the VFS produces the most accurate resultsfor this case.To see how these schemes perform on more highly skewed meshes, we also ranexperiments for the case � = 6 where the mesh is non{smooth (for relatively smallI and J) and highly skewed. The results are summarized in Table 4. First wenote that the VFS still generates the best results when the mesh is re�ned enough(I = J � 32) and that the CEFS produces signi�cantly better results than the CFSand the TSES. It is interesting to notice that the VFS loses its stability for coarserversions of this mesh (I = J less than about 24), but all four methods recover secondorder convergence when the mesh is su�ciently re�ned.
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Figure 3: Typical meshes for the sine domain.5.3 Random MeshNext, we present our results for the random mesh experiments. The random meshover the physical domain 
 = [0; 1]� [0; 1] is de�ned byxij = iI + �I (Rx � 0:5);yij = jJ + �J (Ry � 0:5);where � 2 [0; 1] is a parameter and Rx and Ry are two normalized random variables.When � = 0 the mesh is uniform, and it can become highly skewed when � is close12



Table 3: Results obtained using non-orthogonal meshes (� = 2) on 
 = f(x; y) j 0 �x � 1; 0 � y � Y (x)g. maximum norm L2 norm average iterationsScheme I � J error ratio error ratio per time-stepVFS 8 � 8 2.99e-02 1.01e-02 3.016 � 16 8.96e-03 3.34 2.51e-03 4.01 8.332 � 32 2.47e-03 3.63 6.19e-04 4.05 19.164 � 64 5.92e-04 4.18 1.50e-04 4.12 43.0CFS 8 � 8 1.66e-01 4.29e-02 4.016 � 16 4.20e-02 3.95 1.05e-02 4.08 7.632 � 32 9.28e-03 4.52 2.64e-03 3.99 17.264 � 64 2.18e-03 4.25 6.59e-04 4.01 38.4TSES 8 � 8 1.06e-01 2.90e-02 4.216 � 16 4.18e-02 2.53 1.06e-02 2.73 9.532 � 32 1.26e-02 3.31 3.17e-03 3.35 22.164 � 64 3.40e-03 3.72 8.43e-04 3.76 51.8CEFS 8 � 8 9.47e-02 2.71e-02 4.116 � 16 2.99e-02 3.17 8.13e-03 3.34 10.032 � 32 7.85e-03 3.81 2.15e-03 3.79 22.864 � 64 2.09e-03 3.76 5.49e-04 3.91 50.1to one. Figure 4 shows two typical random meshes generated with � = 0:6 and� = 0:8.These meshes provide a tough test case. The randomly generated mesh is bothskewed and hour{glassed. It is nowhere smooth on its interior and maintains arelatively constant degree of distortion as the number of mesh cells is increased [9].The random mesh has been used by many researchers for testing their methods andin most cases, � has been taken to be less than 0.4, e.g. see [1, 9, 14].Figure 5 summarizes the results obtained with the four schemes on randommeshes generated with � = 0:6. We note that for a �xed pair of values for I andJ , the degree of skewness for the obtained random mesh may vary with di�erentruns. Thus, it is hard to demonstrate the general performance of a method basedsolely on the results obtained with one run per each pair of values of I and J . Weperform 100 runs for each value I = J and the results obtained are then plottedin the �gure. From Figure 5, one can see clearly that the CEFS produces the bestresults for this case and exhibits second order convergence. The VFS generates thenext best results, having nearly second order convergence. The CFS comes in third,having almost a �rst order convergence rate while the TSES is the worst, failing toconverge as the number of cells are increased.Figure 6 shows the results obtained for a much tougher case where the randommesh is generated with � = 0:8. (We would like to remind the reader that the mesh13



Table 4: Results obtained using non-orthogonal meshes (� = 6) on 
 = f(x; y) j 0 �x � 1; 0 � y � Y (x)g. maximum norm L2 norm average iterationsScheme I � J error ratio error ratio per time-stepVFS 8 � 8 8.22e-02 3.03e-02 3.916 � 16 3.92e+12 * 5.82e+11 * 27.732 � 32 3.45e-02 * 8.47e-03 * 53.264 � 64 7.75e-03 4.45 2.51e-03 3.37 130.7128 � 128 2.00e-03 3.88 6.60e-04 3.80 318.9CFS 8 � 8 1.30e+00 3.50e-01 6.616 � 16 2.26e+00 0.58 4.35e-01 0.80 21.132 � 32 1.57e+00 1.44 2.49e-01 1.75 60.664 � 64 9.27e-02 16.90 2.07e-02 12.01 120.0128 � 128 2.35e-02 3.94 3.76e-03 5.51 231.7TSES 8 � 8 4.97e-01 2.02e-01 7.316 � 16 3.26e-01 1.52 1.12e-01 1.80 24.732 � 32 1.36e-01 2.41 4.49e-02 2.50 64.064 � 64 4.67e-02 2.90 1.56e-02 2.87 140.5128 � 128 1.35e-02 3.46 4.54e-03 3.44 325.3CEFS 8 � 8 1.67e-01 6.16e-02 6.516 � 16 1.47e-01 1.14 4.89e-02 1.26 23.532 � 32 7.52e-02 1.96 2.32e-02 2.11 59.564 � 64 2.57e-02 2.92 7.88e-03 2.94 139.9128 � 128 7.27e-03 3.54 2.21e-03 3.57 326.9lines can cross if � is taken to be greater than or equal to one.) For this case, theconvergence of the CEFS is still second order, while the convergence rate for theVFS drops to about 1.5 (compared to the � = 0:6 case where the rate is nearly 2).Both the CEFS and the VFS produced stable results for all 100 test runs. The CFShas a nearly �rst order convergence rate, and the TSES is not convergent.5.4 Z{MeshFinally, we examine the results obtained using a z{mesh as described in [7]. Thez{mesh is shown in �gure 7, and the numerical results appear in Table 5. On thismesh the VFS and the CEFS both produce excellent second order results. TheTSES has only �rst order convergence, and the CFS is divergent.14
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Figure 4: Typical random meshes6 Conclusions and RemarksIn the previous sections we have described four cell{center �nite volume schemes,the continuous edge 
ux scheme, the vertex 
ux scheme, the center 
ux scheme,and the Taylor series expansion scheme for solving di�usion equations. The CEFSis new and the others are existing schemes. Numerical results have been presentedto compare the performance of these schemes on a variety of meshes with di�erentdegrees of skewness. Four types of meshes have been used, the uniform mesh, thegradually changing mesh (the sine domain mesh), the randommesh, and the z{mesh.It has been shown that both the CEFS and the VFS retain second order accuracyon mildly to highly skewed meshes. As the mesh becomes very highly skewed,the VFS loses some of its convergence rate while the CEFS maintains second orderconvergence. The CFS and TSES have second order accuracy only on mildly skewedmeshes. The CFS loses signi�cant accuracy and stability on moderately and highlyskewed meshes, while the TSES fails to converge at all on these meshes.It should be noted that both the CEFS and the VFS may lose their accuracy andstability on a extremely skewedmesh. For instance, we ran numerical experiments onrandom meshes with � = 0:9 and found that the VFS loses second order accuracybut stays stable while the CEFS retains second order accuracy for most of themeshes but becomes unstable for others. To correct these stability problems, a�x-up procedure like one presented in [9] may be necessary.Acknowledgment.This work was supported in part by the NSF under Grant DMS-9626107 and theKansas Center for Advanced Scienti�c Computing sponsored by the NSF-EPSCoR/KSTARprogram. The computations were done on the machines of the Scienti�c Comput-ing and Visualization Laboratory (supported by NSF Grant DMS-9628626) at theDepartment of Mathematics, the University of Kansas.15
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Table 5: Results obtained using z{mesh on 
 = [0; 1]� [0; 1].maximum norm L2 norm average iterationsScheme I � J error ratio error ratio per time-stepVFS 12 � 12 4.37e-02 9.40e-03 4.124 � 24 1.19e-02 3.37 2.77e-03 3.39 10.948 � 48 3.59e-03 3.31 7.35e-04 3.77 27.896 � 96 1.01e-03 3.55 1.88e-04 3.91 75.4CFS 12 � 12 4.20e-01 9.41e-02 3.824 � 24 7.85e-01 * 1.29e-01 * 9.148 � 48 1.16e+05 * 6.33e+03 * 35.496 � 96 1.83e+04 * 8.29e+02 * 124.9TSES 12 � 12 1.08e-01 4.09e-02 6.224 � 24 8.20e-02 1.32 2.69e-02 1.52 17.448 � 48 5.19e-02 1.58 1.52e-02 1.77 42.896 � 96 2.87e-02 1.81 7.91e-03 1.92 105.8CEFS 12 � 12 5.32e-02 1.86e-02 5.824 � 24 2.51e-02 2.12 8.53e-03 2.18 14.348 � 48 9.25e-03 2.71 2.93e-03 2.91 37.796 � 96 2.67e-03 3.46 8.26e-04 3.55 92.3
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