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Abstract

We discuss four cell-center finite volume schemes for differencing diffusion
equations. Numerical results are presented for comparing the performance of
these schemes on a number of meshes with varying degrees of skewness. It is
shown that both the new continuous edge flux scheme and the existing vertex
flux scheme are very stable and generate second order or nearly second order
accurate results on moderately and highly skewed meshes. The other two
existing schemes suffer from accuracy and stability problems on these types
of meshes.
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1 Introduction

Although the ideas underpinning finite volume (FV) methods have been well under-
stood since their introduction by Varga in 1962 [16], it took the research of Jameson
and Caughey [5] and Ni [13] to popularize their application in solving steady state
Euler equations. Since that time, FV methods have developed into efficient, robust
codes used widely in the aerospace industry for solving fluid dynamics problems.
The common method behind all F'V formulations is integrating a differential equa-
tion over a set of cells partitioning the physical domain ). These cells are typi-
cally quadrilateral or triangular when Q C R* and hexahedral or tetrahedral when
) C R®. The integration is accomplished by using Gauss’s theorem to transform
the volume integral over the cell into a surface integral over the cell boundary before
discretizing it.

FV methods have become popular for good reasons. They are flexible enough
to be applied to complex real world domains, and because these methods work
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directly on the physical domain rather than on the computational domain through
coordinate transformations, they can easily be used with adaptive mesh strategies.
The ability to improve accuracy through adaptive meshes is proving essential to
producing accurate, efficient computational fluid dynamics codes [§].

There are three basic classes of FV methods, distinguished by where unknown
variables are stored in relation to the cell. These are cell-center, cell-vertex, and
cell-edge methods. Cell-center methods are by far the most popular due to their
ease of implementation and the close association of the cell residual to the center
unknowns [11]. Morton et al. [10, 11, 12] have advocated cell-vertex methods in
which the unknowns are held at the mesh nodes. The biggest advantages of their
method are due to the small size of the difference stencil involved when a residual
equation is defined. They show that this makes cell-vertex schemes less sensitive to
mesh distortion than cell-center schemes, but admit that the edge averages used in
their cell-center scheme are too simplistic to react to mesh distortions [11]. Cell-
edge schemes are relatively uncommon in the literature.

We consider in this paper the application of cell-center methods to the numerical
solution of diffusion equations. This issue has been addressed before by several
researchers, for examples see [2, 6, 7, 9], and a variety of methods can be found in the
literature for differencing diffusion related terms. Most researchers have presented
results indicating some degree of success for their application examples. However,
we should note that many of these methods have been used only on orthogonal or
nearly orthogonal meshes and have never been studied analytically or numerically
on meshes with higher degrees of skewness. Furthermore, the differences among
some of these methods are very subtle and little work has been done to compare
their performance [6, 9]. This lack of comparative research may be the reason that
none of these methods have seen clear dominance over the others in application. To
add to the confusion, different methods are advocated by recently published books
[2, 10] and review [8] for use in differencing diffusion terms.

The objective of this paper is twofold: first a new scheme is derived and then
its performance is examined along with three other existing schemes. The new
scheme, called the continuous edge flux scheme (CEFS), is derived using an edge flux
continuity condition, motivated by the work of Morel et al. [9]. Unlike the method
of [9], however, this new scheme does not need to use edge unknowns together
with center unknowns. Despite this difference, it will be shown that the CEFS has
comparable performance with the scheme presented in [9]. In addition, we show that
for cases with continuous materials, the CEFS is closely related to the Taylor series
expansion scheme (see below). The three existing schemes selected for investigation
are the vertex flux scheme (VFS) presented by Frink [3] and having much in common
conceptually with the center—scalar nodal-flux (CN) mimetic finite difference scheme
developed by Hyman et al. [1] and Shashkov [14], the center flux scheme (CFS)
discussed extensively in [2] (and references therein), and the Taylor series expansion
scheme (TSES), a classic scheme investigated in [6] and also discussed in [10]. These
difference-based methods are selected because they can easily be implemented on
general meshes with different types of cells and can be extended easily to three
dimensions. They are also second order approximations on orthogonal meshes and
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reduce to five point finite difference schemes for the Laplace operator. In general,
difference-based methods are favored by many researchers because they are much
simpler than finite element—based methods and more flexible than methods based on
coordinate transformations (e.g. see [2, 10]). The comparative study is conducted
with a model convection problem on a carefully chosen selection of meshes having
varying degrees of skewness.

The remainder of this paper is organized as follows. Section 2 will describe the
general formulation of the cell-center F'V discretization for diffusion equations. The
four schemes are described in detail in section 3. Their features and eigenvalue ap-
proximation properties for the Laplace operator on a uniform mesh are discussed
in section 4. In section 5, a two dimensional model is given and used for the test
example. Numerical results obtained with the four schemes are presented and ana-
lyzed for the model problem using four types of meshes. Finally, section 6 contains
conclusions and remarks.

2 Cell-Center Finite Volume Method

In this section we briefly describe the cell-center finite volume method applied to
two dimensional diffusion equations. To be specific, we consider an equation in the
form

0
5 =V-GHL (wyeQ
G = DVu, (1)

where € is a two dimensional simply connected domain, D = D(z,y,1) is the diffu-
sion coefficient matrix (symmetric and positive definite), f = f(x,y,1) is the source
term, and G is the diffusive flux. We assume that (1) is supplemented with appro-
priate initial and boundary conditions and the corresponding initial boundary value
problem is well posed.

Let ¥ = [2,y]T. Denote by #“x the position of a point labeled with X and by ux
the approximation to the unknown function w(7,¢) at point X, i.e. ux = u(rx,t).
(Thus ux is a function of time.) We also use the notation #x_y = 7y — rx for the
vector from X to Y. Point labels in relation to cell center ' are shown in Figure 1.

The basic idea behind the cell-center finite volume method is to define unknown
variables at cell centers and to integrate equation (1) over each cell. Take the cell
V' (with center (') in Figure 1 as an example. After dividing by the cell area A¢,
integration leads to

1/ ou | |
— —dvz—/v-de —/ dv. 9
Ac Vat Ac Vv +Ac Vf ()

Approximating the left hand side term and the source term is standard,

1 Ju N duc

1 -
AO v a ~ W and A—O /V de ~ f(rg,t). (3)
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Figure 1: Typical 2D control volume (quadrilateral) and point labels

For the diffusion term, we use Gauss’s theorem and approximate the resulting line
integral with the midpoint rule. We have

1 1
[ v.qdv=—¢ G- qwd
Ag/v A "

o JOV
1
~ A— (Ge . SFse—ne + Gn . SFne—nw + Gw . San—sw + Gs . Sst—se) ’ (4)
C
where S is the skew matrix S = l _01 (1) ] Substituting (3) and (4) into (2), we
obtain
duc 1 5 . o = N
W — A—C (Ge . Srse—ne + Gn . Srne—nw + Gw . Srnw—sw + Gs . Srsw—se) + f(rcat)-

(5)
Thus, the key to differencing diffusion equations is approximating edge center fluxes
normal to cell edges.

3 Approximation of Diffusive Flux

Four schemes are described in this section for computing the diffusive flux at edge
centers. They are the continuous edge flux scheme (CEFS), the vertex flux scheme
(VFS), the center flux scheme (CFS), and the Taylor series expansion scheme (TSES).
They are named here according to the manner with which the edge center fluxes are
computed. For instance, in the VFS, the flux is first computed at vertices and its
value at edge centers is obtained by averaging.

3.1 The Continuous Edge Flux Scheme (CEFS)

The first scheme is a new one derived using the edge flux continuity condition,
motivated by the work of Morel et al. [9]. In [9], a scheme is developed for calculating
diffusive fluxes based on the continuity of fluxes crossing cell edges. This scheme
can be applied to problems involving material discontinuities, because as long as
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the discontinuity occurs along cell edges the diffusion coefficient matrix may be
calculated unambiguously at the cell center without affecting accuracy. This scheme
has been shown to be second order and to work well on a selection of skewed meshes
when combined with a fix—up procedure invoked for highly skewed cells. The main
disadvantage of the method is that in addition to center variables, it employs two
additional sets of unknown variables stored at edges. This increases the complexity
and cost of implementing the scheme.

To avoid this disadvantage we propose a derivation called the CEFS scheme
which uses the flux continuity condition of [9] in combination with approximation
of the values of the unknown function at the vertices. To be specific, let us consider
the computation of GG.. We begin with computing Vu_ and Vu!, the two one-sided
gradients to the edge 7;._,. at e. Approximating directional derivatives with finite
differences, we have

vue_ *Tse—me N Upe — Use (6)
Vu: -fo—e & u.—uc
and
VU;I— *Tse—ne ~ Upe — Uge (7)
Vut 7 ~ _
U, "TE—¢ ~ Ue ug

The systems (6) and (7) can be solved for Vu_ and Vu}, respectively, as functions
of Upe, Uge, u. and unknown variables uc and ug. The formulas are
Vu, =

€

[(ue - uC’)SFse—ne - (une - use)SFC—e] 9

S e =

VU;I_ — [(ue - uE)SFse—ne - (une - use)SFE—e] ) (8)

where @ = 7o+ STse—pe and b= 7r_. - STse_pe.
Consider now the flux continuity condition. Denote by G and G} the C- and
E-side diffusive fluxes at e, respectively. From the definition, these fluxes can be

expressed by
G, =D Vu;,  GI=DIVu/, (9)

where D7 (or D}) is the limit of the diffusion coefficient taken as the point ap-
proaches e from the C' (or F) side. The diffusion flux continuity condition at the
edge center e is then given by

G it =GF il (10)

€

or

D-Nu- - Sty pe = DFVul - S7_,.. (11)

Substituting (8) into the above condition, we have

b (e — ) (SFaemne) (DT SToene) = (tne = tse) (SFaemne) - (D7 SFe—e)] =
=aq {(u6 —up) (STse—ne) - (D;"SFSB_m) — (tUne — Use) (STse—ne) (D+STE )}

(12)
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This equation can be solved for u. as a function of w,., us.,uc, and ug. If values
Une and ug. are known (in the sense that they can be expressed in terms of unknown
variables), then w. can be obtained and thus Vu_ and the edge center flux G, -
Stse—ne = GT + STse—ne appearing in (5) can be calculated accordingly.

For the computation of us and w,,., we could use a simple average. Instead, we
use the slightly complicated but more accurate formula

Unpe = UO —|— VUO . Fne_o, (13)

where O is the center of the cell with vertices C, E, NE, and N, up = (uc +
up + ung + un)/4, and Vugp is the computed gradient at O. The computation of
Vug is carried out using the common device of writing (du)/(0x) = div(w,0) and
(Ou)/(dy) = div(0,u), applying Gauss’s theorem to appropriate integrals over the
cell, and approximating the resulting line integrals with the trapezoidal rule. This
gives

171

— 1 —
Vuo = 1 2(uE+uNE)STNE—E‘|‘§(UN‘|‘UNE)STN—NE
+ 5

— 1 —
uc + un)Sro_n + §(UE +uc)SrE_c| , (14)

[N

where A is the cell area. The value of uy can be calculated similarly.

Like many other FV schemes, Neumann boundary conditions can be treated
trivially. For Dirichlet boundary conditions, system (6) can, for instance, be used
for solving Vu_ when points ne, e, and se are on the boundary and C is inside the
domain. The edge flux is then calculated by G = D-Vu_.

As in the method of Morel et al. [9], the use of the flux continuity condition
guarantees that a net rate of energy flow across each cell edge is uniquely defined.
This is essential to ensure the global energy conservation. Furthermore, if a material
discontinuity exits at a cell edge, the flux continuity gives the exact interface condi-
tion. In this sense, the condition provides a physical cell interaction. On the other
hand, the computation of w,. and ug in the CEFS is certainly not physical and this
may introduce additional errors for cases with material discontinuities. To see the
significance of this effect, we note that the contributions of u,. and us. to G- - STse_pe
in (5) are proportional to (SFse_ne) - (D7 STo_.) and (STse—pe) - (DF SFe_.), see (8).
If D is a scalar multiple of the identity matrix and both 7o_. and 7g_. are per-
pendicular to 74_,., then u,. and u,. have no effect on the discretization. From
this observation, we can expect that the calculations of u,. and wu, will not affect
significantly the robustness of the scheme on mildly to moderately skewed meshes.

The CEFS has a nine point stencil for equation (1) when a general quadrilateral
mesh is used. On an orthogonal mesh, it reduces to the standard five point finite
difference scheme for the Laplace operator. Thus, the CEFS can be regarded as a
generalization of the standard five point finite difference scheme on a non—uniform
mesh.



3.2 The Vertex Flux Scheme (VFS)

The second scheme to be described is the vertex flux scheme or VFS. It has been
used by Frink [3] and recommended by Mavriplis [8]. It is also interesting to note
that the VFS has much in common conceptually with the second order mimetic CN
finite difference scheme developed by Hyman et al. [1] and Shashkov [14]. The main
idea of this method is to first compute the gradient of u at the vertices and then to
calculate the diffusive flux at the edge centers by averaging.

Specifically, the edge center flux . is computed as follows. First, the gradient
of u at vertex ne (and vertex se) is computed. This is accomplished by taking the
approximation Vu,. ~ Vup and computing Vug using (14). Then, the edge center
flux Ge is computed by averaging,

1
G. = De§ (Vtne + V), (15)

where D, = D(7,,1).

There exist two ways to treat Dirichlet boundary conditions. The first one is to
use formula (14) to compute Vu,,. at the boundary using the cell with vertices N, C,
e, and nne. The second one is to use the same boundary treatment employed in the
CEFS to directly compute the diffusive flux at the edge center e. Surprisingly, our
experience shows that the second approach appears to be inconsistent with the VFS
and produces inferior results on non—orthogonal meshes. Thus, our results reflect
the use of the first boundary treatment.

On a general quadrilateral mesh, the VFS has a nine point stencil with the
calculation for the PDE at ' dependent on the unknown variable u at C' and its
eight neighbors. Interestingly, for the Laplace operator on a rectangular mesh, the
VFS reduces to a skewed five point finite difference stencil with dependency on the
variables at (' and its four corner neighbors SE, NE, NW, and SW. Such a skewed
five point finite difference scheme has rarely been used in practice due to its inferior
accuracy in comparison with the standard five point finite difference scheme. In
fact, Kershaw [7] uses reduction to the standard five point finite difference as a
criterion for accepting or dismissing new schemes. Although the VF'S fails to meet
this criterion, our numerical results show that it is still a highly effective scheme.

3.3 The Center Flux Scheme (CFS)

The third scheme is called the center flux scheme or CFS. It has been studied by
several researchers and is discussed extensively by Ferziger and Peri¢ in their book
[2] (also see references therein). The idea behind this approach is to compute the
flux first at cell centers and interpolate it to edge centers.

The first formula needed is the least squares approximation (interpolation) for .
based on uc and ug. Expanding u(7¢) and u(7g) into Taylor series about 7 = 7, and
minimizing the sum of the coefficients of the first order derivatives in the expansions

lead to o -
Tc_gETe-E T'p_cle-C

Ue =

[7E—cl? ["E—c|?
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On a uniform rectangular mesh, this approximation is reduced to a simple two point
average. To compute edge center flux G., Vuc and Vug are first computed using a
procedure similar to that used for equation (14). The difference is that we use here
the midpoint rule to approximate the related line integrals. The resulting formula
for Vug 1s

1
VUC — A— (ueSFne—se —I' unSan—ne —I' uwSst—nw —I' usSFse—sw) 9 (17)
C

where u, is obtained through (16) and the other edge center values are computed
similarly. After Vuc and Vug have been obtained, we can compute (¢, once again
using (16),
T T o
Ge = l)6 MVUC —|— MVU}; . (18)
Fe-c|? Fe-c|?

Neumann and Dirichlet boundary conditions for this scheme can be treated in
the same way as the CEFS.

The stencil for the CFS generally involves thirteen points. The dependency is
on the unknowns at (', its eight neighbors, and four far neighbors KE, NN, WV,
and SS.

3.4 The Taylor Series Expansion Scheme (TSES)

The last scheme, referred to as the Taylor series expansion scheme or TSES, is the
classic approximation and has been studied extensively by Jeng and Chen [6] and
discussed in [10].

Unlike the VFS and CFS, the first step in this scheme is to approximate the
function values at vertices ne and se by simple averaging,

Upe = —(uc+ug+ung+uyn),

e Bl M

(ue + ugp + usy + us), (19)

Use =

and then to compute the gradient Vu, (and therefore G.) using the Taylor series
expansion. The obtained formula is similar to (14) but on a cell with vertices C, se,
E, and ne.

Like the CEF'S, this scheme also gives a nine point stencil in general and the stan-
dard five point finite difference scheme for the Laplacian operator on an orthogonal
mesh.

Because of this similarity in stencil, it is interesting to see how the TSES is related
to the CEFS. In fact, for the case where the diffusion coefficient D is continuous,
the gradient at edge center e obtained with the CEFS is exactly the same as that
obtained with the TSES, provided the same values for u¢, ug, u,, and u,. are used.
To show this, we first note that the method used in the CEFS uniquely defines V-
and Vu} regardless of the continuity of D. However, when D is continuous, we can
show that VuZ = Vul = Vu,, where Vu, is the unique solution of

\Y H R~
Ue * Tse—ne =~
~

Vu - To_g (20)



the gradients generated uniquely by the CEFS. Moreover, it is not difficult to verify
that the solution of (20) is the same as the gradient produced by the TSES. Hence,
we have proved our assertion.

From this, we can conclude that when D is continuous, the only difference be-
tween the CEFS and TSES is the way in which wu,. and u, are computed.

4 Application to the Laplacian Operator

Before looking at the full results of our numerical experiments using these four meth-
ods, we briefly examine how well each one performs in approximating the eigenvalues
of the Laplacian operator on a uniform mesh. For simplicity, we assume that the
Laplacian operator is defined on the unit square with homogeneous Dirichlet bound-
ary conditions imposed.

Analytically, the Laplacian operator with these conditions applied has a set of
eigenvalues given by Ak, k,) = (k} + k})n* for k, =1,2,3,... and k, = 1,2,3,.. .,
thus the smallest eigenvalue is A = 272, The eigenvalues of the approximation
matrix for each method are computed using Matlab, and the errors in the smallest
eigenvalue for each case are presented in Table 1. Note that in the current case both
the CEFS and the TSES reduce to the standard five point finite difference scheme,
so only the CEFS results are presented.

Table 1: Error in calculating the smallest eigenvalue of the Laplacian

I'xJ || CEFS | CFS VEFS
4x4 | 0.9940 | 3.7392 | 7.8693
8x8 ] 0.2524 | 0.9941 | 4.5694
12x12 || 0.1125 | 0.4469 | 3.1720
16x16 || 0.0634 | 0.2524 | 2.4178
24x24 1 0.0282 | 0.1125 | 1.6318

It is easy to see that both the CEFS and CFS have second order convergence
rates while the convergence of the VIS is only first order. The CEFS and the TSES
have a clear advantage in these results with errors far smaller than the other schemes.
The lower order convergence of the VF'S may be caused by its skewed nature and/or
its inconsistency in stencils around the boundary. In fact, from Figure 2 we can
see that the VFS has a skewed five point stencil at the interior points but at the
boundary cells its stencils have different dependencies. For instance, along the east
boundary, the stencil at C' involves C' and its four neighbors NW, SW, N, and S.

Figure 2 also shows the matrix patterns for the CEFS and the CFS. The CEFS
can easily be seen to be most compact. We should note, however, that both the
CEFS and the VFS have nine point stencils on a general mesh, and as will be seen in
the next section, a poor approximation to the eigenvalues of the Laplacian operator



Figure 2: Matrix pattern for VFS, CFS, and CEFS approximations to Laplace’s
operator on a uniform orthogonal mesh.

on a uniform mesh does not necessarily lead to a poor approximation to the solution
of the diffusion equation.

5 Numerical Experiments

We present in this section the numerical results obtained with the four schemes for
a model problem. This problem has been used by Shashkov and his coworkers for
testing their methods, e.g. see [14]. It is given by

{ut:V-(DVu)—I—f, (z,y) € Q

u=g, (z,y) € 0Q (21)

where ) is a bounded domain to be defined later and the matrix D is a rotation of
the diagonal matrix

- 1—|—2:Jc2—|—y2—|—y5 0
by some angle 6, or
o pT | cos(0) —sin(0)
D=RKR", R = sin(0) cos(0) | (23)

The source function f, the boundary condition ¢, and the initial conditions are
chosen such that the exact solution to the IVBP is u = 6_2”2t5in(7r:1;)5in(7ry). All
of the results presented are obtained using § = /4 in calculating the matrix D.
For all computations, the system of ordinary differential equations resulting from
the FV discretization of (21) is integrated in time from ¢ = 0 to ¢ = 0.01 using the
f—method (6 = 0.5) with a fixed time-step At = 0.001. With this small time step
size, the time discretization error in our results can be ignored compared to the error
from spatial discretization. The resulting system of algebraic equations from this
implicit integration is solved at each time step using the BiCGstab2 [4, 15] iterative
method (without special treatments such as scaling or preconditioning) until the
mean-square root of the residual is less than 107, Four different types of meshes
are used. The meshes and numerical results are described in the following sections.
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5.1 Uniform Mesh

Initial experiments were run using a uniform mesh for the physical domain €} =
[0,1] x [0,1]. The number of cell center unknowns in the  and y directions are [
and J respectively, and therefore the total number of mesh points is (/+1) x (J+1).

Our numerical results are summarized in Table 2. In the table, the columns
represent errors and convergence ratios for the maximum and L; norms as well as
the average number of BiCGstab2 iterations required per time—step.

Although all of the methods tested show a clear second order convergence on the
uniform mesh, the actual error magnitudes differ greatly. As expected, the CEFS
provides the best approximation to the exact solution. In fact, the CEFS errors
are nearly one fifth as large as those of the VFS or CFS. Surprisingly, although the
VFS is the poorest approximator of eigenvalues (having only first order convergence)
for the Laplacian operator on the uniform mesh, it produces second order accurate
results which are comparable to those obtained with the CFS. The TSES produces
the same results as the CEFS on this mesh, so the TSES results are omitted from
the table.

From the table, we can also see that surprisingly that the CFS requires fewer
average iterations per time—step to solve the linear system resulting from the implicit
integration. The VIS is the second most efficient method, while the CEFS is the
most expensive.

Table 2: Results obtained using uniform meshes on Q = [0, 1] x [0, 1].

maximum norm Ly norm average iterations

Scheme | [ x J error ratio error | ratio per time-step
VEFS 8 x 8 || 1.49e-02 6.98¢-03 2.0
16 x 16 || 3.85e-03 | 3.86 || 1.83e-03 | 3.81 3.0
32 x 32 | 9.68e-04 | 3.97 || 4.69¢-04 | 3.91 5.0
64 x 64 || 2.40e-04 | 4.03 | 1.17e-04 | 4.00 11.0
CFS 8 x 8 || 1.52e-02 7.45e-03 2.0
16 x 16 || 3.89¢-03 | 3.90 || 1.92e-03 | 3.88 2.9
32 x 32 | 9.81e-04 | 3.96 | 4.81e-04 | 3.98 4.1
64 x 64 || 2.43e-04 | 4.04 | 1.19e-04 | 4.05 8.6
CEFS 8 x 8 || 3.36e-03 1.66e-03 2.0
16 x 16 || 8.53e-04 | 3.94 || 4.09¢-04 | 4.05 3.0
32 x 32 || 2.11e-04 | 4.05 || 1.01e-04 | 4.07 7.0
64 x 64 || 5.01e-05 | 4.20 || 2.35e-05 | 4.27 15.2

5.2 Sine Domain Mesh

The second type of meshes we use are applied to a sine domain defined as ) =
{(z,y) ]| 0 <2 < 1,0 <y < Y(x)} where Y(z) = 1 + (sin(onx))/2 and o is a
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parameter. This domain has also been used for numerical experiments in [14]. The
mesh is defined as

i JY (245)

l’ij:?,yij: 7 5 iZO,l,...,[, jZO,l,...,J. (24)

This mesh is mildly skewed when o is smaller (such as o = 2) but can become very
skewed for large 0. Two typical meshes for cases ¢ = 2 and ¢ = 6 are shown in
Figure 3.

The results obtained for the case ¢ = 2 are listed in Table 3. Since this type
of mesh is only mildly skewed, all four schemes show second order convergence.
However, unlike on the uniform mesh, the VFS produces the most accurate results
for this case.

To see how these schemes perform on more highly skewed meshes, we also ran
experiments for the case o = 6 where the mesh is non—smooth (for relatively small
I and J) and highly skewed. The results are summarized in Table 4. First we
note that the VIS still generates the best results when the mesh is refined enough
(I =J > 32) and that the CEFS produces significantly better results than the CFS
and the TSES. It is interesting to notice that the VIS loses its stability for coarser
versions of this mesh (1 = .J less than about 24), but all four methods recover second
order convergence when the mesh is sufficiently refined.
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Figure 3: Typical meshes for the sine domain.

5.3 Random Mesh

Next, we present our results for the random mesh experiments. The random mesh
over the physical domain = [0, 1] x [0, 1] is defined by

1o

Tig = ? + Y(Rgg - 05),
] o

vi = 3 + j(Ry —0.5),

where o € [0, 1] is a parameter and R, and R, are two normalized random variables.
When o = 0 the mesh is uniform, and it can become highly skewed when o is close
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Table 3: Results obtained using non-orthogonal meshes (o = 2) on = {(z,y) |0 <
r<1,0<y<Y(x)}

maximum norm Ly norm average iterations

Scheme | [ x J error ratio error | ratio per time-step
VEFS 8 xX 8 | 2.99e-02 1.01e-02 3.0
16 x 16 || 8.96e-03 | 3.34 || 2.51e-03 | 4.01 8.3
32 x 32 || 2.47e-03 | 3.63 | 6.19e-04 | 4.05 19.1
64 x 64 || 5.92e-04 | 4.18 | 1.50e-04 | 4.12 43.0
CFS 8 x 8 || 1.66e-01 4.29e-02 4.0
16 x 16 || 4.20e-02 | 3.95 || 1.05e-02 | 4.08 7.6
32 x 32 ] 9.28e-03 | 4.52 || 2.64e-03 | 3.99 17.2
64 x 64 || 2.18e-03 | 4.25 || 6.59¢-04 | 4.01 38.4
TSES 8 x 8 || 1.06e-01 2.90e-02 4.2
16 x 16 || 4.18e-02 | 2.53 || 1.06e-02 | 2.73 9.5
32 x 32 || 1.26e-02 | 3.31 | 3.17e-03 | 3.35 22.1
64 x 64 || 3.40e-03 | 3.72 | 8.43e-04 | 3.76 51.8
CEFS 8 X 8 || 9.47e-02 2.71e-02 4.1
16 x 16 || 2.99¢-02 | 3.17 || 8.13e-03 | 3.34 10.0
32 x 32 || 7.85e-03 | 3.81 | 2.15e-03 | 3.79 22.8
64 x 64 || 2.09e-03 | 3.76 || 5.49e-04 | 3.91 50.1

to one. Figure 4 shows two typical random meshes generated with ¢ = 0.6 and
o=0.28.

These meshes provide a tough test case. The randomly generated mesh is both
skewed and hour—glassed. It is nowhere smooth on its interior and maintains a
relatively constant degree of distortion as the number of mesh cells is increased [9].
The random mesh has been used by many researchers for testing their methods and
in most cases, o has been taken to be less than 0.4, e.g. see [1, 9, 14].

Figure 5 summarizes the results obtained with the four schemes on random
meshes generated with o = 0.6. We note that for a fixed pair of values for I and
J, the degree of skewness for the obtained random mesh may vary with different
runs. Thus, it is hard to demonstrate the general performance of a method based
solely on the results obtained with one run per each pair of values of [ and J. We
perform 100 runs for each value I = J and the results obtained are then plotted
in the figure. From Figure 5, one can see clearly that the CEFS produces the best
results for this case and exhibits second order convergence. The VFS generates the
next best results, having nearly second order convergence. The CFS comes in third,
having almost a first order convergence rate while the TSES is the worst, failing to
converge as the number of cells are increased.

Figure 6 shows the results obtained for a much tougher case where the random
mesh is generated with o = 0.8. (We would like to remind the reader that the mesh
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Table 4: Results obtained using non-orthogonal meshes (o = 6) on Q = {(z,y) | 0 <
r<1,0<y<Y(x)}

maximum norm Ly norm average iterations

Scheme I xJ error ratio error ratio per time-step
VEFS 8 x 8 8.22e-02 3.03e-02 3.9
16 x 16 || 3.92e+12 * 5.82e+11 * 27.7
32 x 32 3.45e-02 * 8.47e-03 * 53.2
64 x 64 7.75e-03 | 4.45 || 2.51e-03 | 3.37 130.7
128 x 128 || 2.00e-03 | 3.88 | 6.60e-04 | 3.80 318.9
CFS 8 x 8 1.30e+00 3.50e-01 6.6
16 x 16 || 2.26e+00 | 0.58 || 4.35e-01 | 0.80 21.1
32 x 32 || 1.57e+00 | 1.44 | 2.49e-01 | 1.75 60.6
64 x 64 9.27e-02 | 16.90 || 2.07e-02 | 12.01 120.0
128 x 128 || 2.35e-02 | 3.94 | 3.76e-03 | 5.51 231.7
TSES 8 x 8 4.97e-01 2.02e-01 7.3
16 x 16 3.26e-01 | 1.52 || 1.12e-01 | 1.80 24.7
32 x 32 1.36e-01 | 2.41 || 4.49e-02 | 2.50 64.0
64 x 64 4.67e-02 | 2.90 | 1.56e-02 | 2.87 140.5
128 x 128 || 1.35e-02 | 3.46 | 4.54e-03 | 3.44 325.3
CEFS 8 x 8 1.67e-01 6.16e-02 6.5
16 x 16 1.47e-01 | 1.14 || 4.89e-02 | 1.26 23.5
32 x 32 7.52e-02 | 1.96 || 2.32¢-02 | 2.11 59.5
64 x 64 2.57e-02 | 2.92 || 7.88¢-03 | 2.94 139.9
128 x 128 || 7.27e-03 | 3.54 | 2.21e-03 | 3.57 326.9

lines can cross if o is taken to be greater than or equal to one.) For this case, the
convergence of the CEFS is still second order, while the convergence rate for the
VFS drops to about 1.5 (compared to the o = 0.6 case where the rate is nearly 2).
Both the CEFS and the VFS produced stable results for all 100 test runs. The CFS

has a nearly first order convergence rate, and the TSES is not convergent.

5.4 Z—Mesh

Finally, we examine the results obtained using a z—mesh as described in [7]. The
z—mesh is shown in figure 7, and the numerical results appear in Table 5. On this
mesh the VFS and the CEFS both produce excellent second order results. The
TSES has only first order convergence, and the CFS is divergent.
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sigma = 0.6

Figure 4: Typical random meshes

6 Conclusions and Remarks

In the previous sections we have described four cell-center finite volume schemes,
the continuous edge flux scheme, the vertex flux scheme, the center flux scheme,
and the Taylor series expansion scheme for solving diffusion equations. The CEFS
is new and the others are existing schemes. Numerical results have been presented
to compare the performance of these schemes on a variety of meshes with different
degrees of skewness. Four types of meshes have been used, the uniform mesh, the
gradually changing mesh (the sine domain mesh), the random mesh, and the z—mesh.
It has been shown that both the CEFS and the VFS retain second order accuracy
on mildly to highly skewed meshes. As the mesh becomes very highly skewed,
the VIS loses some of its convergence rate while the CEFS maintains second order
convergence. The CFS and TSES have second order accuracy only on mildly skewed
meshes. The CFS loses significant accuracy and stability on moderately and highly
skewed meshes, while the TSES fails to converge at all on these meshes.

It should be noted that both the CEFS and the VFS may lose their accuracy and
stability on a extremely skewed mesh. For instance, we ran numerical experiments on
random meshes with ¢ = 0.9 and found that the VFS loses second order accuracy
but stays stable while the CEFS retains second order accuracy for most of the
meshes but becomes unstable for others. To correct these stability problems, a
fix-up procedure like one presented in [9] may be necessary.
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Table 5: Results obtained using z—mesh on Q = [0, 1] x [0, 1].

maximum norm Ly norm average iterations

Scheme | [ x J error ratio error ratio per time-step
VFS |12 x 12 || 4.37e-02 9.40e-03 4.1
24 x 24 || 1.19e-02 | 3.37 || 2.77e-03 | 3.39 10.9
48 x 48 || 3.59e-03 | 3.31 || 7.35e-04 | 3.77 27.8
96 x 96 | 1.01e-03 | 3.55 || 1.88e-04 | 3.91 75.4
CFS |12 x 12 || 4.20e-01 9.41e-02 3.8
24 x 24 || 7.85e-01 * 1.29e-01 * 9.1
48 x 48 || 1.16e+05 6.33e+03 35.4
96 x 96 || 1.83e+404 8.29e+02 124.9
TSES | 12 x 12 || 1.08e-01 4.09e-02 6.2
24 x 24 || 8.20e-02 | 1.32 || 2.69e-02 | 1.52 17.4
48 x 48 || 5.19e-02 | 1.58 || 1.52e-02 | 1.77 42.8
96 x 96 | 2.87e-02 | 1.81 || 7.91e-03 | 1.92 105.8
CEFS | 12 x 12 || 5.32e-02 1.86e-02 5.8
24 x 24 || 2.51e-02 | 2.12 || 8.53e-03 | 2.18 14.3
48 x 48 || 9.25e-03 | 2.71 || 2.93e-03 | 2.91 37.7
96 x 96 | 2.67e-03 | 3.46 | 8.26e-04 | 3.55 92.3
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