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Abstract. The work presented here describes a method of coordinate transformation that
enables spectral methods to be applied efficiently to differential problems with steep solutions. The
approach makes use of the adaptive finite difference method presented by Huang and Sloan [SIAM
J. Sci. Comput., 15 (1994), pp. 776–797]. This method is applied on a coarse grid to obtain a rough
approximation of the solution and a suitable adapted mesh. The adaptive finite difference solution
permits the construction of a smooth coordinate transformation that relates the computational space
to the physical space. The map between the spaces is based on Chebyshev polynomial interpolation.
Finally, the standard pseudospectral (PS) method is applied to the transformed differential problem
to obtain highly accurate, nonoscillatory numerical solutions. Numerical results are presented for
steady problems in one and two space dimensions.
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1. Introduction. PS methods provide an attractive alternative to finite differ-
ence and finite element methods for numerical solution of differential equations. The
PS method involves approximation by global basis functions—trigonometric or alge-
braic polynomials, for example—whereas finite difference and finite element methods
involve local approximations. For problems with smooth solutions the convergence
rate of PS methods is faster than algebraic as the number of grid points increases, and
the significance of this so-called spectral convergence is that a specified accuracy can
usually be achieved using fewer grid points than would be required by the algebraically
convergent finite difference or finite element approaches. However, if a solution has a
steep region such as a boundary layer or an interior layer the PS method will achieve
high accuracy only if the number of grid points is sufficiently high to permit resolu-
tion of the localized phenomena. The required number can be prohibitive in practice,
and if insufficient grid points are used an inaccurate numerical solution contaminated
by global oscillations will result. In situations of this type a PS method will not be
competitive with local approximation methods.

Various schemes have been proposed for improving spectral or PS approximations
of steep or discontinuous solutions. The schemes might well be classified into two
groups that treat dependent and independent variables, respectively.

Remedial action on dependent variables usually involves the addition of some form
of artificial viscosity or the application of postprocessing such as filtering. Examples
of filtering applied to spectral approximation of discontinuous solutions may be found
in the papers by Majda, McDonough, and Osher [21]; Gottlieb, Lustman, and Orszag
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[12]; and Cai, Gottlieb, and Shu [7], [8]. The vanishing viscosity method proposed by
Tadmor for shock capturing is described in [23, 24, 25]. All of these methods produce
spectral accuracy in smooth regions between discontinuities, with each discontinuity
generally confined to one grid interval. Recently, Huang and Sloan [17] proposed
an upwind PS method for singular perturbation problems without turning points.
This upwind method is shown to be free of oscillations and spectrally accurate as the
number of grid points tends to infinity, with the perturbation parameter held fixed.

Methods that deal with treatment of the independent variable are applicable to
problems with steep, but smooth, solutions. Here, the usual approach is to apply a
coordinate transformation that is designed to smooth out regions of high gradient.
In the transformed coordinate a PS method can yield spectral accuracy using a rea-
sonably small number of grid points. A transformation that adapts to the features
of a solution—usually constructed as the solution is being generated numerically—is
the basis of adaptive grid generators. This has been used to great effect with finite
difference and finite element methods (for example, see [6], [10], [15], [18], [26], [27],
[28]). A common theme in adaptive finite difference and finite element methods is the
concept of equidistribution, which seeks to distribute some function evenly over the
domain of the problem. The function is usually some measure of computational error
or solution variation. The paper by Huang and Sloan [18] gives an interpretation of
equidistribution in the context of adaptive grid generation for multidimensional prob-
lems. An equidistribution principle is developed in [18] and it is used to formulate a
finite difference grid generation algorithm in two space dimensions.

Adaptive schemes have so far not been extended in a widely applicable formula-
tion to spectral or PS approximation methods. In this paper we show how adaptivity
based on equidistribution may be incorporated into PS discretization of problems in
one space dimension. We also show how to improve the effectiveness of PS methods
for steep solutions in one and two dimensions by adapting a coordinate transformation
to a quickly computed finite difference solution. A highly accurate PS solution is then
obtained in the transformed coordinate. Adaptively generated coordinate transfor-
mations have been used previously in PS computations. In [1] this approach is used
to solve problems with steep, but continuous, solutions and a coordinate transforma-
tion is coupled with artificial viscosity to solve shock wave problems. An analogous
technique is adopted in [2], [3], [4], [5], and [14] to solve the Burgers equation, reac-
tion diffusion equations, and flame propagation problems. In each of these papers the
coordinate transformation is represented as a parameterized function whose structure
is known a priori. The parameter values are obtained by minimizing a functional that
measures some error in the computed solution: for example, the functional might be
related to the interpolation error. For a specified number of grid points the accuracy
obtained in the transformed coordinate is much higher than that which would result
from direct PS solution in the physical coordinate. Note that, in general, polynomial
approximation in the transformed coordinate corresponds to approximation in the
physical coordinate by means of basis functions that are not polynomials. It is the
use of basis functions resulting from the mapping that gives rise to the high accuracy
of the computed solution.

A parameterized transformation containing a small number of parameters—as
used in [2], [3], [4], [5], and [14]—is only effective if prior knowledge of the solution is
available. For example, the prior knowledge might be information on the locations of
fronts. Here we remove the need for prior knowledge by using parameterized functions
containing many parameters, with information on the features of the solution gener-
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ated by means of a low-cost adaptive finite difference method. Since the knowledge
of the solution is generated numerically the features of the solution are not needed a
priori, and the method is thus widely applicable.

The objectives of this paper are to show that adaptivity may be coupled with
PS discretization to produce highly accurate solutions to problems that have steep,
smooth solutions. We show how a postprocessing PS discretization may be applied
to adaptive finite difference solutions, computed quickly on coarse grids, to produce
highly accurate results at little extra cost. The PS discretization is applied to a
system that has the same degree of nonlinearity as the physical system. For example,
if the physical PDE is linear, then the PS discrete equations are linear. Section 2
extends the finite difference adaptive method of Huang and Sloan [18] to deal with PS
discretization in one space dimension. In section 3 we use the adaptive finite difference
scheme in [18] to produce an approximation of the solution and an adapted mesh in
the physical coordinate: here a coarse mesh suffices to give a solution that need not be
highly accurate. Polynomial interpolation is then used to obtain approximations to
the physical mesh at Chebyshev nodes, and a coordinate transformation is obtained by
fitting a Chebyshev polynomial expansion to these nodal values. Finally, a standard
PS method is employed to solve the transformed differential equation. The process
is presented for problems in one space dimension in section 3 and for two space
dimensions in section 4, and in each of these sections numerical results are described
for steady problems with near-singular solutions. Section 5 contains conclusions and
comments on our PS adaptive algorithms.

2. PS adaption based on equidistribution.

2.1. Formulation of algorithm. In [18] the concept of equidistribution is used
to generate a one-to-one coordinate transformation from the computational domain
Dc to the physical domain Dp in the form

x = x(ξ), ξ ∈ Dc ⊂ Rm.(2.1)

The determination of a mesh, or distribution of nodes, on Dp is equivalent to the
construction of a (discrete) transformation (2.1). The presentation by Huang and
Sloan shows how an equidistribution principle may be used to determine a distribution
of nodes on Dp that corresponds—under the transformation (2.1)—to a given uniform
mesh on Dc.

In this section we give the obvious PS extension of the algorithm in [18]: a (dis-
crete) transformation (2.1) is constructed that determines a distribution of nodes on
Dp corresponding to a set of Chebyshev–Gauss–Lobatto nodes on Dc. For simplic-
ity we present the PS adaptive method for steady differential problems in one space
dimension, in which case the map (2.1) takes the form

x = x(ξ), ξ ∈ [−1, 1].(2.2)

Without loss of generality we assume that x ∈ [−1, 1] ⊂ R under (2.2), with

x(−1) = −1, x(+1) = +1.(2.3)

Consider the linear boundary value problem
 ε

d2u

dx2
− p(x)

du

dx
− q(x)u = f(x), x ∈ (−1, 1),

u(−1) = a, u(+1) = b,
(2.4)
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where ε > 0 is a small constant (ε � 1) and p, q, and f are smooth functions. (It
will be obvious in the sequel that more general linear and nonlinear boundary value
problems may be dealt with in an analogous manner.) If x is related to a coordinate
ξ ∈ Dc = [−1, 1] by the transformation (2.2) and (2.3), and if v(ξ) = u(x(ξ)), we may
write equation (2.4) with independent variable ξ in the form


ε

(xξ)2
d2v

dξ2
−
[
p(x(ξ))

xξ
+

εxξξ
(xξ)3

]
dv

dξ
− q(x(ξ))v = f(x(ξ)), ξ ∈ (−1, 1),

v(−1) = a, v(+1) = b,

(2.5)

where xξ ≡ dx
dξ . If x = x(ξ) is chosen such that v(ξ) is slowly varying, the PS approx-

imation of (2.5) will exhibit spectral accuracy. To obtain an effective transformation
(2.2) we need to make use of information concerning the features of the solution of
(2.4). Here we input the essential information by ensuring that a monitor function
based on scaled arc length be equally distributed throughout the physical domain Dp

[18].
Following [18] we use the monitor function

M(x, u) = 1 + α2

(
du

dx

)2

,(2.6)

where α is a real parameter. The condition that M be equally distributed between
nodes in Dp that correspond one-to-one with Chebyshev–Gauss–Lobatto nodes in Dc

is readily shown to be

√
1− ξ2 M

1
2 xξ = constant.(2.7)

(2.7) is a reformulation of equation (16) in [18], with the nodes in the ξ coordinate
now distributed at Chebyshev locations. The aim now is to obtain a PS solution of
the coupled equations (2.5) and (2.7), making use of the boundary conditions (2.3)
and the monitor function representation (2.6).

There are several possible discretizations of the mesh equation (2.7). The one
that we eventually adopted is obtained by squaring (2.7) then differentiating with
respect to ξ. This procedure gives

xξ[(1− ξ2)xξξ − ξxξ] + α2vξ[(1− ξ2) vξξ − ξvξ] = 0,(2.8)

where we have used the transformed monitor function

M = 1 + α2
( vξ
xξ

)2

.(2.9)

Equations (2.3), (2.5), and (2.8) are solved by PS discretization to yield approxima-

tions {xi}Ni=0 and {vi}Ni=0 at the Chebyshev nodes

ξi = − cos
πi

N
, i = 0, 1, . . . , N,(2.10)

where N is a positive integer and α is set to some preselected value. Approximations
to derivatives at node ξi are computed as summations of the form

(xξ)i =
N∑
j=0

D
(1)
ij xj , (xξξ)i =

N∑
j=0

D
(2)
ij xj ,(2.11)
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where D(1) and D(2) are, respectively, the first-order and second-order PS differenti-
ation matrices corresponding to the nodes (2.10). The reader is referred to references
[9] and [11] for information on PS solutions.

The nonlinear algebraic system in 2(N − 1) unknowns arising from the PS dis-
cretization of (2.3), (2.5), and (2.8) is solved using a Newton–Raphson iteration with
exact representation of the Jacobian, and with continuation in the parameters α and
ε. The parameter ε is set to a value ε ∼ 1 and a family of problems is solved on the
continuation path [0, ε] → [α, ε], with the arc-length scaling parameter increasing by
small steps from 0 to α. A second family of problems is then solved on the continua-
tion path [α, ε] → [α, ε], with the diffusion parameter decreasing by small steps from
ε to ε. The discrete system with ε << 1 may have a number of unstable solutions. By
employing continuation in ε from the relatively large value—where there is only one
(stable) solution for prescribed α—the path of the stable solution can be followed.
The implementation of the continuation process involved a step length, initially set to
solve in one step, reduced by a factor 4 on failure of the Newton–Raphson method and
increased by a factor 1.1 on successful convergence. The Newton–Raphson method
was deemed to have failed if the residual increased on successive iterations or when
eight iterations were performed without convergence to a required tolerance.

If the equations are solved in the manner described above the mesh quality may
be poor. In particular, for this one-dimensional situation, it is possible that node
crossing will occur. This corresponds to a situation where the transformation (2.2)
is not strictly monotonic increasing in some subregion of [−1, 1]. To avoid this type
of difficulty it is necessary to incorporate some smoothing into the solution process.
This has been discussed, for example, in [10] and [18] and an analysis is given in [16].

The smoothing introduced here is achieved by introducing filtering during the
evaluation of PS derivative approximations as in equations (2.11). Derivative filtering
is readily achieved by modifying the appropriate PS differentiation matrix, and for
this purpose it is convenient to consider a factorized form of the matrix. Suppose a
function v is approximated by the Nth degree polynomial expressed as

v(ξ) ∼ vN (ξ) =
N∑
n=0

an Tn(ξ),(2.12)

where Tn is a Chebyshev polynomial of the first kind of degree n. If the coeffi-

cients
{
an
}N
n=0

are chosen such that v(ξi) = vN (ξi) for i = 0, 1, . . . , N , then a =

[a0, a1, . . . , aN ]T is related to vN = [vN (ξ0), vN (ξ1), . . . , vN (ξN )]T by the linear rela-
tion

vN = C−1 a or a = C vN ,(2.13)

where C is the discrete Chebyshev transform matrix. The first derivative of v is
approximated by

dvN
dξ

=
N∑
n=0

b(1)n Tn(ξ),(2.14)

where the properties of Chebyshev polynomials enable us to relate

b(1) = [b
(1)
0 , b

(1)
1 , . . . , b

(1)
N ]T to a as (see [13])

b(1) = E(1) a.(2.15)
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The vector that approximates the first-order derivative of v at the nodes
{
ξi
}N
i=0

is
given by

v
(1)
N =

[dvN
dξ

(ξ0),
dvN
dξ

(ξ1), . . . ,
dvN
dξ

(ξN )
]T
,

and it is readily seen from (2.13)–(2.15) that this is

v
(1)
N = C−1 E(1) C vN .(2.16)

The matrix C−1 E(1) C is the first-order PS differentiation matrix D(1) introduced in
(2.11). Higher-order differentiation matrices have the structure

D(r) = C−1 E(r) C, r = 2, 3, . . . ,(2.17)

where E(r) is readily determined [13]. Alternative views of D(r) are described in the
review by Fornberg and Sloan [11].

Filtering may be included in the differentiation process by modifying D(r) to

D̃(r) = C−1 E(r) BC,(2.18)

where B is a diagonal matrix with elements Bii = βi, i = 0, 1, . . . , N . In this section
we have adopted an exponential filter of the form

βi = exp[−δ(i/N)γ ] with δ = 32.(2.19)

Note that β0 = 1, 0 < βi < 1 for i = 1, 2, . . . , N , and βi ≈ 0 for i close to N . The
effect of introducing B in (2.18) is to diminish the magnitudes of the high components
in the expansion (2.12) prior to the differentiation process. Filtering may be included
in the approximations to xξ, xξξ, vξ, vξξ in (2.5), (2.8).

2.2. Illustrative examples. We now apply the above algorithm to four sim-
ple test problems: three linear and one nonlinear. In each case the same filtering
strategy has been employed: the differentiation matrix D̃(r), given by (2.18), is used
for the evaluation of vξ and vξξ in (2.8), and for the evaluation of xξ and xξξ in the
transformed differential equation to be solved.

Example 2.1. Consider the linear boundary value problem
 ε

d2u

dx2
+ 2x

du

dx
= 0, x ∈ (−1, 1),

u(−1) = −1, u(1) = 1.
(2.20)

Given that the exact solution of (2.20) will be very close to u(x) = erf(x/
√
ε), we

note that for small ε this variable coefficient problem has a steep front at x = 0.

Upon transformation, the term ε d2u
dx2 becomes ε

xξ
(
vξ
xξ

)ξ, with the ith component in the

discrete system given by ε
(xξ)i

∑N
k=0 D

(1)
ik (

vξ
xξ

)k. The same discretization procedure is

adopted for the identical second derivative term in Examples 2.2–2.4.
We use problem (2.20) to first illustrate the necessity for some form of grid adap-

tion when applying a PS method to approximate solutions with steep gradients. Fig-
ure 1a plots the standard PS method approximation for the solution of (2.20) with
ε = 0.0002, using N = 32. The corresponding adaptive PS approximation, with mesh
adaption parameter α = 0.5 and filter parameter γ = 10, is plotted in Figure 1b and
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Fig. 2. Maximum absolute errors versus filter parameter γ for adaptive PS solutions to (2.20)
with ε = 0.0002, α = 0.5, and N = 32.

shows that the grid adaption effectively removes the large oscillations by sufficiently
resolving the steep front. Figure 1b also plots the mapping x(ξ) used implicitly in the
adaptive PS method; we note that the value of xξ(ξ), though positive throughout, is
very small in a small neighborhood of x = 0.

To show the effect of the filter parameter γ on the error in approximation of the
adaptive PS method, Figure 2 plots the maximum absolute error against a range of
values of γ. For smaller values of γ the filter becomes too strong for steep fronts to
be sufficiently resolved: the continuation method halts before ε has been reduced as
low as 0.0002. For larger values of γ the filter becomes too weak to dampen out small
oscillations in x(ξ) resulting in a loss of monotonicity: grid crossing is observed. The
figure shows that within the range of permissible values of γ, the maximum error does
not vary substantially.

Although the adaptive PS method appears to improve on the standard PS method
for solving (2.20) given moderately small values of ε, it fails for values of ε much below
0.0002. A finite difference method, on the other hand, can provide (see section 3)
results of a similar accuracy for much smaller values of ε.

Example 2.2. We now consider a problem obtained by modifying Example 2.1 so
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that the solution has a nonzero gradient outside the front for small ε. This is
 ε

d2u

dx2
+ x

du

dx
= −επ2 cos(πx)− πx sin(πx), x ∈ (−1, 1),

u(−1) = −2, u(1) = 0.
(2.21)

For this problem, the adaptive PS method performs no better than the standard PS
method for values of ε down to 0.001 and does not converge at all for smaller values
of ε.

Example 2.3. The linear boundary value problem
 ε

d2u

dx2
+ 2x

du

dx
= − 2√

πε

[
e−(x+0.5)2/ε − e−(x−0.5)2/ε

]
, x ∈ (−1, 1),

u(−1) = −2, u(1) = 2

(2.22)

has steep fronts at x = ±0.5 for small ε.
The results for this problem are very similar to those of Example 2.2. The adaptive

PS method performs no better than the standard PS method.
Example 2.4. The final illustration in this subsection is the nonlinear boundary

value problem 
 ε

d2u

dx2
− d(u2)

dx
= 0, x ∈ (−1, 1),

u(−1) = 1, u(1) = −1.
(2.23)

In this case the steep front, situated at x = 0, has width of order ε, whereas in the
three previous examples the width was of order

√
ε. Figure 3 plots the transformation

x(ξ), the monitor function (scaled to have maximum value 1) in computational space,
and the computed solution, for ε = 0.01, in physical and computational space, using
N = 32, α = 1, and γ = 10. The maximum absolute error in this case is 4.440× 10−2

compared with an error of 0.678 for the standard PS method. Note that the effect
of filtering uξ in the mesh equation is to allow contributions from higher derivatives
uξξ, uξξξ, etc. to the computed monitor function [22]. This effect is desirable with
respect to uξξ for the better resolution of x(ξ), where xξ is varying rapidly, but is less
desirable with respect to higher derivatives. Unfortunately, the filtering process used
here cannot be that selective.

The numerical experiments described above led us to conclude that simultaneous
solution of discretized forms of (2.5) and (2.8) has its drawbacks. For example, in an
extremely steep region the map x = x(ξ) may have ripples that destroy monotonicity,
and this gives rise to node crossing. To avoid this, extreme care is needed in intro-
ducing filtering. Furthermore, the effort expended in finding a very accurate solution
of the mesh equation (2.8) reduces the computational efficiency of this approach, par-
ticularly if one wished to apply it to multidimensional problems. A high accuracy is
not required for the node locations. In the next section we present a method that
overcomes some of these problems.

3. Adaptive transformation method in one dimension.

3.1. Adaptive finite difference method. Here we give a brief description of
the adaptive finite difference method that is used in the construction of the one-to-
one coordinate transformation between the physical and computational domains. The
method is a one-dimensional formulation of the equidistribution method described in
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[18]. Suppose the aim is to solve equation (2.4). We assume that a transformation
x = x(η) is required relating physical nodes

{
xi
}n
i=0

in Dp = [−1, 1] and evenly spaced
nodes

ηi = −1 +
2i

n
, i = 0, 1, . . . , n(3.1)

in Dc = [−1, 1]. The equidistribution principle is expressed as

[
M x2

η

] 1
2

= constant,(3.2)

where M is the scaled arc-length monitor function

M = 1 + α2
(wη

xη

)2

(3.3)

introduced in (2.6), and w(η) = u(x(η)). Equation (3.2) is approximated at ηi+1/2 by
second-order central finite differences to give

[
M

i+
1
2

(xi+1 − xi
ηi+1 − ηi

)2
] 1

2
= constant, i = 0, 1, . . . , n− 1,

where

M
i+

1
2

= 1 + α2
(wi+1 − wi

xi+1 − xi

)2

and xi = x(ηi), wi = u(xi). As in [18] we eliminate the constant and obtain the
system

[
M

i− 1
2

(xi − xi−1

ηi − ηi−1

)2
] 1

2 −
[
M

i+
1
2

(xi+1 − xi
ηi+1 − ηi

)2
] 1

2
= 0, i = 1, 2, . . . , n− 1.(3.4)
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To obtain a smooth mesh we make use of smoothed matrices

M̃
i+

1
2

=

i+p∑
k=i−p

M
k+

1
2

( q

q + 1

)|k−i|
i+p∑

k=i−p

( q

q + 1

)|k−i| ,(3.5)

where the positive real number q is the smoothing parameter and the nonnegative
integer p is the smoothing index [18]. In (3.5) the summations contain only those
elements that are well defined (0 ≤ k ≤ n − 1). The discretized grid equation may
now be written as



[
M̃

i− 1
2

(xi − xi−1

ηi − ηi−1

)2
] 1

2 −
[
M̃

i+
1
2

(xi+1 − xi
ηi+1 − ηi

)2
] 1

2
= 0,

for i = 1, 2, . . . , n− 1,
with x0 = −1 and xn = +1.

(3.6)

This grid system is augmented by a finite difference approximation of the differ-
ential equation (2.4). This is obtained by first transforming to the computational
coordinate—to give an equation akin to (2.5), with v and ξ replaced by w and η,
respectively—and then discretizing on the uniform mesh by three-point upwind and
central finite differences for the first and second derivatives, respectively. It should be
noted that central differences may be used to approximate the first-order derivative

within the adaptive algorithm. The resulting nonlinear algebraic system in
{
xi
}n−1

i=1

and
{
ui
}n−1

i=1
is solved by Newton iteration with exact Jacobian and continuation in

α and ε as described immediately below equation (2.11).
Note the effect of the smoothing index p on the structure of the Jacobian in

the Newton iteration. The linearization of (3.6) gives rise to a linear (3 + 2p) block
diagonal system, where each block is 2 × 2. As p increases the smoothness of the
mesh increases, and mesh points tend to move out from steep regions to the adjacent
regions of high curvature. Note, of course, that the matrices to be inverted in the
Newton iteration become more dense as p is increased. To obtain a high quality mesh
it is essential to find a balance between the tendency of increasing α2 to pull mesh
points into a steep region and the tendency of increasing p to move mesh points out
from a steep region.

3.2. Construction of coordinate transformation. The previous section pro-
vides a discrete transformation that relates the physical mesh

{
xi
}n
i=0

to an evenly

spaced mesh
{
ηi
}n
i=0

on Dc. We now use this information to provide a smooth trans-
formation like (2.2) that will take u in (2.4) to a suitably slowly varying v in (2.5). We
seek a transformation x = x(ξ) relating the computational and physical domains that
satisfy some essential properties. To ensure that the map is differentiable and readily
computable we shall approximate x = x(ξ) by a real polynomial Pm(ξ), where the
degree m need not be set equal to n. To prevent node crossing in Dp we could impose
the severe monotonicity condition P ′

m(ξ) > 0 ∀ξ ∈ [−1, 1]. In principle, this can be
achieved by a least squares approach, but it gives rise to a very unwieldy system of
equations in the parameters that define Pm. The conditions imposed effectively ensure
that P ′

m has no real zeros in the interval [−1, 1]. There are approximation theoretic
results on monotone approximation by polynomials that are based on Jackson-type
theorems: the reader is referred to the paper by Leviatan [19] and references therein.
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Here we present a simple technique for the construction of a polynomial approxi-
mation to the map x = x(ξ). It does not guarantee strict monotonicity for ξ ∈ [−1, 1],
but it gives consistently good results in practice. The transformation will be approxi-
mated by a Chebyshev polynomial expansion of degree m, and to evaluate coefficients
in this expansion we require values of x at the Chebyshev nodes

ξi = − cos
πi

m
, i = 0, 1, . . . ,m.(3.7)

The values
{
xi
}m
i=0

that approximate x at these Chebyshev nodes are obtained by

linear interpolation on the solution
{
xj
}n
j=0

computed on the evenly spaced grid. The

transformation (2.2) is approximated by

x(ξ) =

m∑
k=0

ak Tk(ξ)(3.8)

and the interpolatory conditions x(ξi) = xi, i = 0, 1, . . . ,m, yield

ak =
2

m

1

ck

m∑
j=0

xj
cj

cos
(πkj
m

)
,(3.9)

where

ck =

{
1, k = 1, 2, . . . ,m− 1,
2, k = 0,m.

(3.10)

To achieve spectral accuracy when solving the transformed equation (2.5) by
means of a PS method it is absolutely essential that the transformation (2.2) (now
approximated by (3.8)) be smooth. The polynomial approximation will not gener-
ally have positive gradient throughout [−1, 1]: there will be small amplitude, high
frequency oscillations in regions of Dc that correspond to regions of large gradient in
Dp. The effect of these oscillations can be diminished by using an appropriate filter
in the expansion (3.8). The smoothed transformation is

x = Pm(ξ) =

m∑
k=0

σk ak Tk(ξ),(3.11)

where

0 ≤ σk+1 ≤ σk ≤ 1 for k = 0, 1, . . . ,m− 1.

Two filters used in the computations to be presented in this section are the raised co-
sine filter and the 2-parameter exponential filter. These may be written, respectively,
as

σk =
1

2

[
1 + cos

(πk
m

)]
,(3.12)

σk = exp
[− δ(k/m)γ

]
,(3.13)

where δ and γ are positive real numbers.



1272 L. S. MULHOLLAND, W.-Z. HUANG, AND D. M. SLOAN

Note that the introduction of filtering yields a transformation (3.11) that no longer
satisfies the boundary conditions (2.3). If steep regions in the solution u of (2.4) are
not close to the boundaries, then no real difficulties ensue, since u(−1) ∼ u(Pm(−1))
and u(+1) ∼ u(Pm(+1)). If the problem has a steep boundary layer, however, then
the transformation must satisfy (2.3). This can be achieved if we proceed as follows.
The procedure refers to real polynomials Qm−2 and Qm−2 of degree m−2 and to real

polynomials Pm and Pm of degree m.
Procedure.

(i) Define Qm−2 by Pm(ξ) = (1− ξ2)Qm−2(ξ) + ξ =
∑m

k=0 akTk(ξ);

(ii) Write Qm−2 in the form

Qm−2(ξ) =
m−2∑
k=0

bk Tk(ξ)

and obtain
{
bk
}m−2

k=0
using the recurrence relation

bj := −4aj+2 + 2bj+2 − bj+4 for j = m− 2,m− 3, . . . , 0

(bj ≡ 0 for j > m− 2) followed by the correction b0 := 0.5b0;
(iii) Replace Qm−2(ξ) by the filtered expansion

Qm−2(ξ) =

m−2∑
k=0

σk bk Tk(ξ);

(iv) Define Pm by

Pm(ξ) = (1− ξ2)Qm−2(ξ) + ξ.(3.14)

Note that (3.14) satisfies the boundary conditions at ξ = ±1.
This completes the construction of the approximation to the map (2.2) and (2.3).

The differential problem (2.4) is transformed to the form (2.5), and this problem is
now solved using a standard PS method based on nodes

ξi = − cos
πi

N
, i = 0, 1, . . . , N.(3.15)

The complete computation uses integers n,m, and N that are completely independent
of each other. Typical values in the computations described below are n = 40, m = 64,
and N = 128.

3.3. Illustrative examples. Here we repeat, for the adaptive transformation
method outlined above, the examples given in section 2.2, that is, the interior layer
problems (2.20)–(2.23).

Example 3.1. To illustrate how well the adaptive transformation method can cope
with very steep fronts, we apply the method to problem (2.20) with ε = 10−10. In all
calculations involving the smoothing process (3.5) we set the parameter q to the value
2. Filtering of the Chebyshev expansion (3.11) was effected using the exponential
filter (3.13) with δ set to the value 32. Figure 4a plots the approximate solution
on physical and computational meshes and the smoothed and unsmoothed maps for
the parameter set {n = 64, α = 8, p = 18, m = 164, γ = 7, N = 128}. Figure 4b
plots the corresponding monitor function, in physical and computational space, for
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Fig. 4. Adaptive transformation solution, maps, and monitor function for (2.20) with ε =
10−10, n = 64, m = 164, N = 128.

Table 1
Maximal errors of adaptive transformation method, using n = 32, α = 4, p = 8, m = 64, and

γ = 4 for (2.20) with ε = 10−6.

N max. error N max. error

16 8.913× 10−3 20 4.472× 10−3

32 1.122× 10−4 40 9.967× 10−6

64 4.309× 10−8 80 7.920× 10−9

128 1.830× 10−12 160 1.781× 10−13

the adaptive finite difference method. For this steep problem (front–width≈ 10−5) the
finite difference error is 3.304×10−3 and the transformation-PS error is 2.317×10−7.

In Table 1 we summarize the maximal errors of computed solutions to (2.20), for
different values of N , of the adaptive transformation method for the case ε = 10−6

using m = 64 and filter (3.13) with γ = 4; these are based on an adaptive finite
difference computed solution, using n = 32, α = 4, and p = 8, whose maximum
absolute error was 9.478 × 10−3. The increase in accuracy as N increases clearly
exhibits spectral convergence. For the finite difference method alone to achieve an
accuracy of 1.830×10−12 it would have to use in the order of 2.3 million mesh points.

Thus we have demonstrated that PS postprocessing can produce very accurate
solutions, but we have yet to demonstrate its computational efficiency. An interesting
point here is, what do we compare the cost of the PS method against? We have two
clear choices:

(i) a purely adaptive finite difference strategy with increasing number of grid
points,

(ii) low-order finite difference postprocessing replacing PS postprocessing.

The first case, where we simply apply the first stage finite difference adaptive grid
method with more grid points to achieve greater accuracy, will not be competitive
as our adaptive algorithm stands. This is because the first stage algorithm has been
designed for robustness (able to solve very stiff problems) rather than computational
efficiency. More specifically, for the same number of grid points n the second-order
adaptive grid method repeatedly solves a nonlinear system of 2(n − 1) equations
using a nearly full Jacobian, while the PS method solves a full system of (n − 1)
equations which will be linear if the underlying PDE is linear. The second method
provides for a much more realistic (and much studied) comparison, that is, between
PS and finite difference methods for solving problems with smooth solutions. As an
example, we apply centered second-order finite difference postprocessing to the above
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problem. Figure 5 graphs the computational cost of achieving a range of accuracies
for both PS and second-order finite difference postprocessing normalized to the cost
for the adaptive grid method to obtain an adapted grid; all parameter values are
those listed in the caption for Table 1. Figure 5 clearly shows that the PS method is
more efficient than the finite difference method when very high accuracy of solution
is sought. Projected finite difference cost is an estimate for higher accuracies based
on an O(n) operation count and no round-off error. Further work is required to give
a detailed comparison of postprocessing strategies over a number of test problems in
one and two dimensions.
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Costs of PS and FD postprocessing
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Fig. 5. Comparison of computational costs for PS and second-order finite difference postpro-
cessing to achieve a range of accuracies to the solution of (2.20).

For the remaining examples in this section we simply provide figures showing the
computed solutions and their associated transformations for very small values of ε.
The general trends with respect to the various parameters of the overall method are
similar in all cases.

Example 3.2. Figure 6 shows the adaptive transformation solution and associated
transformation for problem (2.21) with ε = 10−10 and using the parameter values
listed in the caption. The maximum pointwise error of the method in this case is
7.549× 10−6 compared with 8.575× 10−2 for the adaptive finite difference method.

Example 3.3. Figure 7 shows the adaptive transformation solution and associated
transformation for problem (2.22) with ε = 10−6 and using the parameter values listed
in the caption. The maximum pointwise error of the method in this case is 3.134×10−5

compared with 2.372× 10−2 for the adaptive finite difference method.

Example 3.4. Figure 8 shows the adaptive transformation solution and associated
transformation for the nonlinear problem (2.23) with ε = 10−5 and using the param-
eter values listed in the caption. The maximum pointwise error of the method in this
case is 6.311 × 10−7 compared with 2.192 × 10−3 for the adaptive finite difference
method.

Parameter sensitivity. In the overall method there are many free parameters
for which values must be set. For some of these parameters the values can be fixed
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Fig. 6. Adaptive transformation solution and transformation for (2.21) with ε = 10−10 and
using n = 64, α = 2, p = 16, m = 128, N = 128, and γ = 6.
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Fig. 8. Adaptive transformation solution and transformation for (2.23) with ε = 10−5 and
using n = 64, α = 2, p = 9, m = 164, N = 128, and γ = 6.

and never altered: e.g., q = 2 in the smoothing process (3.5) and δ = 32 in the filter
(3.13). For the degree of polynomial expansion m in the transformation procedure, a
value of 164 was found to be large enough in all test cases tried in this paper. The
really critical parameters with respect to PS solution sensitivity are the smoothing
index p and the filter parameter γ. we now consider these parameters in more detail.

Solution sensitivity with respect to γ. We first address the question of how
sensitive is the adaptive transformation method to the choice of filter parameter γ.
As an example, Figure 9 plots the maximum pointwise error of the method applied to
(2.20) with ε = 10−6 and using n = 64, α = 4, p = 8, m = 164, N = 128 for a range of
values for the filter parameter in (3.13). In this case, the optimal choice of γ = 2.3 is
very sharp; however, any value between 2.1 and 8 would yield a satisfactory error and
the rapid convergence achieved by the PS method will reduce the error very quickly
with increasing N . For the other test problems the optimal choice for γ is less sharp,
but there is a persisting pattern: γ has a minimum value below which the mapping is
no longer monotone, γ should be small (i.e., close to but not less than the minimum
value), and the best choice for γ is relatively invariant with respect to n and α for a
particular test problem.

Solution sensitivity with respect to p. With regard to the choice of value
for the smoothing index p we note that the best choice with respect to minimizing
error in the adaptive finite difference computed solution is not necessarily the ideal
choice with respect to the construction of a smooth coordinate transformation. It is
our experience that the latter is usually larger than the former to allow for better
resolution of x(ξ) wherever |xξξ| is large. Figure 10 indicates, for Example 3.4, how
the best choice for p might vary with different values for n and α. We observe that
choosing 8 ≤ p ≤ 10 is close to optimal in all cases. It is our experience that the best
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choice for p varies from problem to problem but does not vary significantly as we vary
n and α when solving a particular problem.

From our gathered numerical evidence it would seem that the choice of p is far less
critical in obtaining good PS approximations than is the choice of γ. This conclusion
is reached by examining contour plots of maximum errors against p and γ (for brevity
these are not included here) which show steep gradients in the γ direction and shallow
gradients in the p direction.

4. Adaptive transformation method in two dimensions.

4.1. Construction of the coordinate transformation. Here we consider a
second-order boundary value problem represented as

L(u, ux, uy, uxx, uxy, uyy; ε) = 0,(4.1)

where, as before, ε is a small positive parameter and L is a linear or nonlinear operator.
Although the method presented here can generally be applied to problems defined on
simply connected domains in R2 we select the rectangular domain [−1, 1]× [−1, 1] for
simplicity. Suppose that u is subject to Dirichlet boundary conditions{

u(−1, y) = uL(y), u(+1, y) = uR(y) for y ∈ [−1, 1],

u(x,−1) = uB(x), u(x,+1) = uT (x) for x ∈ [−1, 1],
(4.2)

and that u is continuously differentiable, albeit steep, on [−1, 1] × [−1, 1]. In this
section we assume that we have at our disposal a one-to-one coordinate transformation

x = X(ξ, η) and y = Y (ξ, η), ∀(ξ, η) ∈ [−1, 1]× [−1, 1],(4.3)

where ξ and η denote the spatial coordinates on the computational domain Dc. Fur-
thermore, suppose that the transformations (4.3) satisfy end conditions{

X(−1, η) = −1, X(+1, η) = +1 ∀ η ∈ [−1, 1],

Y (ξ,−1) = −1, Y (ξ,+1) = +1 ∀ ξ ∈ [−1, 1].
(4.4)

Under the transformation (4.3) we may write the differential problem (4.1) and
(4.2) in terms of the dependent variable v(ξ, η) = u(X(ξ, η), Y (ξ, η)) and indepen-
dent variables ξ and η. As in the analogous transformation of (2.4) to (2.5) for
one-dimensional problems we assume that v(ξ, η) is sufficiently smooth for PS ap-
proximation to yield spectral accuracy.

The method used to generate X and Y is an extension of the one-dimensional
method described in section 3. The first stage of the construction involves the solution
of problem (4.1) by means of the two-dimensional adaptive finite difference method
of Huang and Sloan [18]. Our approach differed from that described in [18] only
in the technique adopted for the solution of the coupled nonlinear algebraic system
in the grid locations (xi,j , yi,j) and the approximations ui,j at these points for i =
0, 1, . . . , n; j = 0, 1, . . . ,m. Here we use a fully coupled system and a Newton iteration
with exact Jacobian and continuation. The nonlinear solver is the obvious extension
of that outlined for one-dimensional problems under equation (3.6). An alternative
approach to the computation of the coarse grid is offered by the adaptive finite volume
method proposed by Mackenzie [20].

As in the one-dimensional case, we aim to construct transformations that prevent
mesh crossing. The monotonicity condition which we hope to achieve is given in the
following definition.
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Definition 4.1. The two-dimensional coordinate transformation (4.3) is mono-
tonic in ξ and η in [−1, 1]× [−1, 1] if, given

−1 ≤ ξ1 < ξ2 ≤ 1 and − 1 ≤ η1 < η2 ≤ 1,

then

X(ξ1, η) < X(ξ2, η) ∀ η ∈ [−1, 1] and

Y (ξ, η1) < Y (ξ, η2) ∀ ξ ∈ [−1, 1].

Monotonicity in ξ and η, as defined above, will not guarantee the reversibility
of the coordinate transformation (4.3): the necessary and sufficient condition for
reversibility is that the Jacobian of the transformation be nonzero on the whole com-
putational domain, including the boundary. Here we use the obvious extension of
the one-dimensional approach that was described in section 3. Again, it does not
guarantee strict monotonicity, but it gives good results for some extremely severe test
problems in two space dimensions.

The finite difference adaptive method [18] on the coarse, evenly spaced computa-
tional grid {

ξi
}n
i=0

,
{
ηj
}m
j=0

produces the physical mesh (xi,j , yi,j) for i = 0, 1, . . . , n and j = 0, 1, . . . ,m. We
then use bilinear interpolation to obtain the values xk,` and yk,` for k = 0, 1, . . . , nx
and ` = 0, 1, . . . ,my, where these values approximate x and y, respectively, at the
Chebyshev nodes

ξk = − cos
πk

nx
, η` = − cos

π`

my
.(4.5)

The transformation for x in (4.3) is approximated by

P x(ξ, η) =

nx∑
i=0

my∑
j=0

axi,j Ti(ξ)Tj(η),(4.6)

and the interpolatory conditions


P x(ξk, η`) = xk,`

for k = 0, 1, . . . , nx,

` = 0, 1, . . . ,my,

(4.7)

yield the coefficients axk,`. Similarly, the transformation for y in (4.3) is approximated
by

P y(ξ, η) =

nx∑
i=0

my∑
j=0

ayi,j Ti(ξ)Tj(η),(4.8)

with coefficients selected such that


P y(ξk, η`) = yk,`

for k = 0, 1, . . . , nx,

` = 0, 1, . . . ,my.

(4.9)



1280 L. S. MULHOLLAND, W.-Z. HUANG, AND D. M. SLOAN

Smoothing is introduced to P x and P y by means of a boundary-preserving filter which
is now illustrated for the transformation P x.

Procedure
(i) Define a bivariate polynomial Qx by P x(ξ, η) = (1− ξ2)Qx(ξ, η) + ξ;
(ii) Write Qx as a double Chebyshev series in the form

Qx(ξ, η) =

nx−2∑
i=0

my∑
j=0

bxi,j Ti(ξ)Tj(η).

The bxi,j are obtained using, for each
j = 0, 1, . . . ,my, the recurrence relation

bxi,j := −4axi+2,j + 2bxi+2,j − bxi+4,j (bxi,j ≡ 0 for i > nx − 2)

for i = nx − 2, nx − 3, . . . , 0, followed by bx0,j := 0.5bx0,j ;

(iii) Replace Qx(ξ, η) by the filtered expansion

Qx(ξ, η) =

nx−2∑
i=0

my∑
j=0

σi,j b
x
i,j Ti(ξ)Tj(η);

(iv) Define Px by

Px(ξ, η) = (1− ξ2)Qx(ξ, η) + ξ.(4.10)

In (iii) above the filter is conveniently defined by

σi,j = exp

[
− δ

( √
(i2 + j2)√

(n2
x +m2

y)

)γ]
,(4.11)

where δ and γ are positive real numbers. As in the one-dimensional case the parameter
δ was set to the value 32 in all numerical computations. The transformation Py is
defined by an analogous procedure, and the transformations (4.3) are given by the
identification {

x = X(ξ, η) := Px(ξ, η),

y = Y (ξ, η) := Py(ξ, η).
(4.12)

This completes the construction of the approximation to the map (4.3) and (4.4).
The availability of the differentiable map permits the transformation of (4.1) to a
problem with dependent variable v and independent variables ξ and η, where v(ξ, η) =
u(X(ξ, η), Y (ξ, η)). The transformation makes use of the identities

ξx =
1

g
yη, ξy = −1

g
xη, ηx = −1

g
yξ, ηy =

1

g
xξ,(4.13)

where g is the Jacobian of the transformation, ∂(X,Y )
∂(ξ,η) . For example, the first derivative

terms become

ux = ξx vξ + ηx vη = (yη vξ − yξ vη)/g,

uy = ξy vξ + ηy vη = (−xη vξ + xξ vη)/g.
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The second derivative term uxx transforms to

uxx = ξxx vξ + ηxx vη + (ξx)
2vξξ + 2ξx ηx vξη + (ηx)

2vηη,

where differentiation of the appropriate terms in (4.13) yields


ξxx =
1

g3

[− (yη)
2gξ + yξyηgη + yηyξηg − yξyηηg

]
,

ηxx =
1

g3

[
yξyηgξ − (yξ)

2gη + yηyξξg − yξyξηg
]
.

(4.14)

uxx is expressed in terms of ξ and η derivatives by means of (4.13) and (4.14). If all
second derivatives are transformed in a similar manner the differential problem (4.1)
and (4.2) may be expressed in the form

L(v, vξ, vη, vξξ, vξη, vηη; ε) = 0, (ξ, η) ∈ [−1, 1]× [−1, 1],(4.15)

with boundary conditions


v(−1, Y (−1, η)) = uL(Y (−1, η)) for η ∈ [−1, 1],

v(+1, Y (+1, η)) = uR(Y (+1, η)) for η ∈ [−1, 1],

v(X(ξ,−1),−1) = uB(X(ξ,−1)) for ξ ∈ [−1, 1],

v(X(ξ,+1),+1) = uT (X(ξ,+1)) for ξ ∈ [−1, 1].

(4.16)

Equations (4.15) and (4.16) are now solved using a standard PS method based on
nodes 


ξi = − cos

πi

Nx
, i = 0, 1, . . . , Nx,

ηj = − cos
πj

My
, j = 0, 1, . . . ,My.

(4.17)

The complete computation uses integers n,m, nx,my, Nx, and My that are indepen-
dent of each other. The main programming effort for the overall method in two dimen-
sions is in the coding of the exact Jacobian of the adaptive finite difference discrete
system for the mesh equation incorporating variable adaptivity (α) and smoothing
(p). However, this effort need only be expended once, provided the same form of mon-
itor function is used; only a little extra effort is involved in recoding the discretizations
of different differential equations to be solved.

4.2. Illustrative examples.
Example 4.1. Consider the convection-diffusion equation

1

ε

∂u

∂x
=

∂2u

∂x2
+
∂2u

∂y2
+ ω2

[
1− e(x−1)/ε

]
sin(ωy), 0 < x, y < 1,(4.18)

with boundary conditions on the unit square given by the exact solution

u(x, y) =
[
1− e(x−1)/ε

]
sin(ωy).(4.19)

Here ω and ε are prescribed positive constants, with, generally, ε << 1. The exact
solution has a steep front along the line x = 1 whose gradient is independent of y. We
would therefore expect that mesh adaption will be mostly in the x direction and that
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the grid will remain orthogonal. Figure 11 shows the adaptive finite difference and
transformed PS meshes generated for problem (4.18) with ω = π and ε = 0.001 and
using the parameter values listed in the caption. Figure 12 shows the corresponding
adaptive transformation solution in both physical and computational coordinates; this
solution has a maximum pointwise error of 1.474× 10−4, whereas the adaptive finite
difference method has an error of 4.060 × 10−2. A cross section of the associated
transformation X(ξ, η) for η = −1 is plotted in Figure 13—the cross section is very
similar across all values of η; as expected the transformation Y (ξ, η) ≈ η ∀ξ.
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(a)     FD grid
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Fig. 11. Adaptive finite difference and transformed PS meshes for (4.18) with ω = π and
ε = 0.001 and using n = m = 10, α = 1, p = 4, nx = ny = 64, γ = 2, Nx = Ny = 32.

If we now set ω = 1.5π in (4.18) then we would expect a small amount of grid
adaption in the y direction and some variation in cross section of X(ξ, η) for differ-
ent values of η. Figure 14 shows the adaptive finite difference and transformed PS
meshes generated for problem (4.18) with ω = 1.5π and all other parameter values
unaltered. Figure 15 shows the corresponding adaptive transformation solution in
both physical and computational coordinates; this solution has a maximum pointwise
error of 1.105 × 10−3, whereas the adaptive finite difference method has an error of
5.839× 10−2. Cross sections of the associated transformation X(ξ, η) for η = −1 and
η = 0.773 are plotted in Figure 16—the cross sections do vary slightly with η.

Example 4.2. Fit a PS grid to

u = tanh

[
1

ε

(
1

16
−
(
x− 1

2

)2

−
(
y − 1

2

)2
)]

.(4.20)

For small ε this function resembles a top hat with front located on the circle
(x− 1

2 )2+(y− 1
2 )2 = 1

16 . We use the adaptive finite difference method with n = m = 20,
α = 4, and p = 2 to generate a finite difference grid for the function with ε = 0.01.
The transformation method is then used, with settings nx = my = 64 and γ = 2,
to generate mappings X(ξ, η) and Y (ξ, η) which allow u to be transformed into a
function of ξ and η. This done, an Nx = My = 32 PS grid is laid in (ξ, η) space.
Figure 17 shows the finite difference and PS grids adapted to the function (4.20).
Note that the finite difference grid actually crosses due to the high level of adaption
(α = 4) and the low level of smoothing (p = 2), while the PS grid does not cross.
This is a clear case of wrinkles in the initial data being smoothed out by the filtering
process used in obtaining X(ξ, η) and Y (ξ, η). Figure 18 shows how the coordinate
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(a)   Adaptive transformation solution
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Fig. 12. Adaptive transformation solution, in physical and computational coordinates of (4.18)
with ω = π and ε = 0.001 and using n = m = 10, α = 1, p = 4, nx = ny = 64, γ = 2, Nx = Ny = 32.
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Fig. 13. Coordinate transformation slice X(ξ,−1) for (4.18) with ω = π and ε = 0.001 and
using nx = ny = 64 and γ = 2.
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Fig. 14. Adaptive finite difference and transformed pseudospectral meshes for (4.18) with ω =
1.5π and ε = 0.001 and using n = m = 10, α = 1, p = 4, nx = ny = 64, γ = 2, Nx = Ny = 32.

transformation has mapped the sharp circular front onto a slope of much shallower
gradient. The grid adaption for this function is intrinsically two dimensional, so
we would expect considerable variation in the profile of the transformation X(ξ, η)
as η changes value. Figure 19 plots these profiles for all the discrete values of η,
ηi = − cos πi

32 for i = 0, 1, . . . , 32. The greatest amount of adaption (small gradients
at x = 0.25 and x = 0.75) occurs when η = 0.0 while the least amount of adaption
occurs at η = ±1.

We also constructed a Poisson problem with right-hand side chosen such that
(4.20) is the known solution. The previously generated mappings X(ξ, η) and Y (ξ, η)
are now used to transform the Poisson equation which is then solved by the standard
PS method. Table 2 lists the maximum pointwise errors of the PS approximations
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(a)   Adaptive transformation solution
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Fig. 15. Adaptive transformation solution, in physical and computational coordinates of (4.18)
with ω = 1.5π and ε = 0.001 and using n = m = 10, α = 1, p = 4, nx = ny = 64, γ = 2,
Nx = Ny = 32.
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Fig. 16. Coordinate transformation slices X(ξ,−1) and X(ξ, 0.773) for (4.18) with ω = 1.5π
and ε = 0.001 and using nx = ny = 64 and γ = 2.
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Fig. 17. Adaptive finite difference and transformed PS meshes for function (4.20) with ε = 0.01
and using n = m = 20, α = 4, p = 2, nx = ny = 64, γ = 2, Nx = Ny = 32.

based on Nx = Ny = N PS grids for small values of N . Again the rapid convergence
of the PS method is demonstrated.

5. Conclusions and comments. An adaptive coordinate transformation method
has been described that enables differential problems with near-singular solutions to
be solved by PS methods. A key advantage of our approach is that it describes a
mechanism that allows PS discretization to be coupled with other finite difference or
finite element methods to give highly accurate computed solutions at little extra cost.
The local adaptive methods may be computed at low computational cost on coarse
grids to produce input for a PS postprocessing. If the physical PDE is linear then
the equation to be solved by the PS method is also linear, and if the physical PDE
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(a) Function in physical space
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(b) Function in computational space
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Fig. 18. Function (4.20) with ε = 0.01 fitted to PS mesh in both physical and computational
coordinates using n = m = 20, α = 4, p = 2, nx = ny = 64, γ = 2, Nx = Ny = 32.
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Fig. 19. Coordinate transformation slices, X(ξ, η) over many values of η, for the function
(4.20) with ε = 0.01 and using nx = ny = 64 and γ = 2.

Table 2
Maximum pointwise errors of PS solution to transformed Poisson equation with (4.20) as exact

solution for several small values of Nx = Ny = N .

N L∞
16 1.990× 10−1

24 1.683× 10−2

32 7.635× 10−4

is nonlinear the local adaptive solution provides an initial estimate for the iterative
solution of the nonlinear PS equations. Numerical results for steady problems show
that the method is robust and extremely accurate, even in cases of extreme stiffness.
The approach presented here may be regarded as an extension of the adaptive finite
difference method described in [18] (other adaptive finite difference or finite element
methods might replace that described in [18]): greatly improved accuracy is achieved
at little extra computational cost.

The method of Huang and Sloan [18] uses the idea of equidistribution, based
on the monitor function (3.3). Ideally, one seeks a method that equidistributes the
local error over the domain of the problem, and it would be of interest to examine
the error distribution properties of the method presented here. A good coordinate
transformation is probably one that is driven by a sharp local error estimate.

Clearly, this method needs further investigation, and it should be applied to more
complex differential systems. In this way the strengths and weaknesses may be iden-
tified. Currently work is under way on extending the PS coordinate transformation
method to time-dependent problems.
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